Skip to main content
Log in

Different global gene expression profiles in benzo[a]pyrene-and dioxin-treated vascular smooth muscle cells of AHR-knockout and wild-type mice

  • Original Contributions
  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Benzo[a]pyrene (B[a]P) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are potent ligands for the aryl hydrocarbon receptor (AHR). High-density oligonucleotide microarrays were used to generate global gene expression profiles of wild-type and Ahr −/− vascular smooth muscle cells (SMCs) from mouse aorta. To determine whether there are signaling pathways other than the AHR involved in B[a]P metabolism, wild-type and AHR knockout (Ahr −/− SMCs were exposed to B[a]P. Two signaling pathways, represented by TGF-β2 and IGF-1, were identified as potential candidates of an AHR alternate pathway for cells to respond to B[a]P. The wild-type SMCs responded similarly to B[a]P and TCDD in the regulation of a small set of common genes known to respond to the activated AHR (e.g., glutamine S-transferase). However, wild-type SMCs responded in a way that involves many additional genes, suggesting that a very divergent cellular response may be involved when SMCs are exposed to the two classic inducers of the AHR. In contrast, many more genes in the Ahr −/− cells responded similarly to B[a]P and TCDD, inducluding Cyp1b1, than responded differently, which indicates that eliminating the AHR is effective for investigating potential alternate cellular mechanisms that respond to B[a]P and TCDD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gelboin, H.V. (1980). Benzo[a]pyrene metabolism, activation and carcinogenesis: role and regulation of mixed-function oxidases and related enzymes. Physiol. Rev. 60: 1107–1066.

    PubMed  CAS  Google Scholar 

  2. Ramos, K.S. (1999). Redox regulation of c-Ha-ras and osteopontin signaling in vascular smooth muscle cells. Implications in chemical atherogenesis. Annu. Rev. Pharmacol. Toxicol. 29:243–265.

    Article  Google Scholar 

  3. Birnbaum, L.S. (1994). The mechanism of dioxin toxicity: relationship to risk assessment. Environ. Health Perspect. 102(Suppl. 9):157–167.

    PubMed  CAS  Google Scholar 

  4. Nebert, D.W., Puga A., and Vasiliou, V. (1993). Role of the Ah receptor and the dioxin-inducible [Ah] gene battery in toxicity, cancer, and signal transduction. Ann. NY Acad. Sci. 685:624–640.

    Article  PubMed  CAS  Google Scholar 

  5. Sayer, J.M., Whalen, D.L., and Jerina, D.M. (1989). Chemical strategies for the inactivation of bay-region diolepoxides, ultimate carcinogens derived from polycyclic aromatic hydrocarbons. Drug Metab. Rev. 20:155–182.

    PubMed  CAS  Google Scholar 

  6. Denissenko, M.F., Pao, A., Tang, M., and Pfeifer, G.P. (1996). Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hot spots in P53. Science 274: 430–432.

    Article  PubMed  CAS  Google Scholar 

  7. Landers, J.P. and Bunce, N.J. (1991) The Ah receptor and the mechanism of dioxin toxicity. Biochem. J. 276:273–287.

    PubMed  CAS  Google Scholar 

  8. Fernandez-Salguero, P., Pineau, T., Hilbert, D.M., McPhail, T., Lee, S.S., Kimura, S., Nebert, D.W., Rudikoff, S., Ward, J.M., and Gonzalez, F.J. (1995). Immune system impairment and hepatic fibrosis in mice lacking the dioxinbinding Ah receptor. Science 268:722–726.

    Article  PubMed  CAS  Google Scholar 

  9. Brenner, D.A. (1996). New functions for the aryl hydrocarbon receptor. Hepatology 23:379–380.

    Article  PubMed  CAS  Google Scholar 

  10. Schmidt, J.V., Su, G.H.-T., Reddy, J.K., Simon, M.C., and Bradfield, C.A. (1996). Characterization of a murine Ahr null allele: involvement of the Ah receptor in hepatic growth and development. Proc. Natl. Acad. Sci. USA 93:6731–6736.

    Article  PubMed  CAS  Google Scholar 

  11. Andreola, F., Fernandez-Salguero, P.M., Chiantore, M.V. Petkovich, M.P., Gonzalez, F.J., and De Luca, L.M. (1997). Aryl hydrocarbon receptor knockout mice (AHR−/−) exhibit liver retinoid accumulation and reduced retinoic acid metab-olism. Canc. Res. 57:2835–2838.

    CAS  Google Scholar 

  12. Lahvis, G.P., Lindell, S.L., Thomas, R.S., McCuskey, R.S., Murphy, C., Glover, E., et al. (2000). Portosystemic shunting and persistent fetal vascular structures in aryl hydrocarbon receptor-deficient mice. Proc. Natl. Acad. Sci. USA 97:10442–10447.

    Article  PubMed  CAS  Google Scholar 

  13. Elizondo, G., Fermandez-Salguero, P.M., Sheikh, M.S., Kim, G.Y., Fornace, A.J., Lee, K.S., et al. (2000). Altered cell cycle control at the G(2)/M phase in aryl hydrocarbon receptor-null embryo fibroblast. Mol. Pharmacol. 57: 1056–1063.

    PubMed  CAS  Google Scholar 

  14. Guo, J., Sartor, M., Karyala, S., Medvedovic, M., Kann, S., Puga, A., et al. (2003). Expression of genes in the TGF-a signaling pathway is significantly deregulated in smooth muscle cells from aorta of aryl hydrocarbon receptor knock-out mice. toxicol. Appl. Pharmacol. 194:79–89.

    Article  Google Scholar 

  15. Gonzalez, F.J. and Fernandez-Salguero, P. (1998). The aryl hydrocarbon receptor. Studies using the AHR-null mice. Drug Metab. Disposition 26:1194–1198.

    CAS  Google Scholar 

  16. Zaher, H., Fernandez-Salguero, P.M., Letterio, J., Sheikh, M.S., Fornace, A.J. Jr., Roberts, A.B., et al. (1998). The involvement of aryl hydrocarbon receptor in the activation of transforming growth factor-a and apoptosis. Mol. Pharmacol. 154:313–321.

    Google Scholar 

  17. Gaido, K.W., Maness, S.C., Leonard, L.S., and Greenlee, W.F. (1992). 2,3,7,8-Tetrachlorodibenzo-p-dioxin-dependent regulation of transforming growth factors-α and-β2 expression in a human kerationocyte cell line involves both transcriptional and post-transcriptional control. J. Biol. Chem. 267:24591–24595.

    PubMed  CAS  Google Scholar 

  18. Lee, D.C., Barlow, K.D., and Gaido, K.W. (1996). The actions of 2,3,7,8-tetrachlorodibenzo-p-dioxin on transforming growth factor-a2 promoter activity are localized to the TATA box binding region and controlled through a tyrosine kinase-dependent pathway. Toxicol. Appl. Pharmacol. 137:90–99.

    Article  PubMed  CAS  Google Scholar 

  19. Ramos, K. and Cox, L.R. (1987). Primary cultures of rat aortic endothelial and smooth muscle cells: an in vitro model to study xenobiotic-induced vascular cytotoxicity. In Vitro Cell. Dev. Biol. 23288–296.

    Article  PubMed  CAS  Google Scholar 

  20. Kerzee, J.K., and Ramos, K.S. (2000). Activation of c-Haras by benzo(a)pyrene in vascular smooth muscle cells involves redox stress and aryl hydrocarbon receptor. Molec. Pharmacol. 58:152–158.

    CAS  Google Scholar 

  21. Hegde, P., Qi, R., Abernathy, K., Gay, C., Dharap, S., Gaspard, R., et al. (2000). A concise guide to cDNA microarray analysis. Bio Techniques 29:548–562.

    CAS  Google Scholar 

  22. DeRisi, J., Penland, L., Brown, P.O., Bittner, M.L., Meltzer, P.S., Ray, M., et al. (1996). Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat. Genet. 14:457–460.

    Article  PubMed  CAS  Google Scholar 

  23. Dudoit, S., Yang, Y., Callow, M.J., and Speed, T.P. (2002). Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Statistica Sinica 12:111–139.

    Google Scholar 

  24. Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Royal Statist. Soc. B 57:289–300.

    Google Scholar 

  25. Wolfinger, R.D., Gibson, G., Wolfinger, E.D., Bennett, L., Hamadeh, H., Bushel, P., et al. (2001). Assessing gene significance from cDNA microarray expression data via mixed models. J. Comput. Biol. 8:625–637.

    Article  PubMed  CAS  Google Scholar 

  26. Livak, K.J. and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25: 402–408.

    Article  PubMed  CAS  Google Scholar 

  27. Wetherill, Y.B., Petre, C.E., Monk, K.R., Puga, A., and Knudsen, K.E. (2002). The xenoestrogen bisphenol A induces inappropriate and rogen receptor activation and mitogenesis in prostatic adenocarcinoma cells. Mol. Cancer Ther. 1:515–524.

    PubMed  CAS  Google Scholar 

  28. Chen, Y.H. and Ramos, K.S. (2000). ACCAAT/enhancer binding protein (C/EBP) site within antioxidant/electrophile response element (ARE/EpRE) along with CREB binding protein (CBP) participate in the negative regulation of rat GST-Ya gene in vascular smooth muscle cells. J. Biol. Chem. 275:27366–27376.

    PubMed  CAS  Google Scholar 

  29. Niermann, T., Schmutz, S., Erne, P., and Resink, T. (2003). Aryl hydrocarbon receptor ligands repress T-cadherin expression in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 300:943–949.

    Article  PubMed  CAS  Google Scholar 

  30. Shen, X., Li, J., Hu, P.P., Waddell, D., Zhang, J., and Wang, X.F. (2001). The activity of guanine exchange factor NET1 is essential for transforming growth factor-a-mediated stress fiber formation. J. Biol. Chem. 276: 15362–15368.

    Article  PubMed  CAS  Google Scholar 

  31. Gacheru, S.N., Thomas, K.M., Murray, S. A., Csiszar, K., Smith-Mungo, L.I., and Kagan, H.M. (1997). Transcriptional and post-transcriptional control of lysyl oxidase expression in vascular smooth muscle cells: effect of TGF-a 1 and serum deprivation. J. Cell Biochem. 65:395–407.

    Article  PubMed  CAS  Google Scholar 

  32. Shanley, C.J., Gharaee-Kermani, M., Sarkar, R., Welling, T.H., Kriegel, A., Ford, J.W., et al. (1997). Transforming growth factor-a 1 increases lysyl oxidase enzyme activity and mRNA in rat aortic smooth muscle cells. J. Vasc. Surg. 25:446–452.

    Article  PubMed  CAS  Google Scholar 

  33. Bhowmick, N.A., Ghiassi, M., Bakin, A., Aakre, M., Lundquist, C.A., Engel, M.E., et al., (2001). Transforming growth factor-a1 mediates epithelial to mesenchymal trans-differentiation through a RhoA-dependent mechanism. Mol. Biol. Cell 12:27–36.

    PubMed  CAS  Google Scholar 

  34. Taya, S., Inagaki, N., Sengiku, H., Makino, H., Iwamatsu, A., Urakawam I. et al. (2001). Direct interaction of insulinkike growth factor-1 receptor with leukemia-associated RhoGEF. J. Cell Biol. 155:809–820.

    Article  PubMed  CAS  Google Scholar 

  35. Kuemmerle, J.F. and Bushman, T.L. (1998). IGF-I stimulates intestinal muscle cell growth by activating distinct PI 3-kinase and MAP kinase pathways. Am. J. Physiol. 275: G151-G158.

    PubMed  CAS  Google Scholar 

  36. Tannheimer, S.L., Ethier, S.P., Caldwell, K.K., and Burchiel, S.W. (1998). Benzo[a]pyrene- and TCDD-induced alterations in tyrosine phosphorylation and insulinlike growth factor signaling pathways in the MCF-10A human mammary epithelial cell line. Carcinogenesis 19: 1291–1297.

    Article  PubMed  CAS  Google Scholar 

  37. Reape, T.J., Kanczler, J.M., Ward, J.P., and Thomas, C.R. (1996). IGF-I increases bFGF-induced mitogenesis and upregulates FGFR-1 in rabbit vascular smooth muscle cells. Am. J. Physiol. 270:H1141-H1148.

    PubMed  CAS  Google Scholar 

  38. Sanderson, N., Factor, V., Nagy, P., Kopp, J., Kondaiah, P., Wakefield, L., et al. (1995). Hepatic expression of mature transforming growth factor (1 in transgenic mice results in multiple tissue lesions. Proc. Natl. Acad. Sci. USA 92:2572–2576.

    Article  PubMed  CAS  Google Scholar 

  39. Oft, M., Akhurst, R.J., and Balmain, A. (2002). Metastasis is driven by sequential elevation of H-ras and Smad 2 levels. Nat. Cell Biol. 4:487–494.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig R. Tomlinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karyala, S., Guo, J., Sartor, M. et al. Different global gene expression profiles in benzo[a]pyrene-and dioxin-treated vascular smooth muscle cells of AHR-knockout and wild-type mice. Cardiovasc Toxicol 4, 47–73 (2004). https://doi.org/10.1385/CT:4:1:47

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/CT:4:1:47

Key Words

Navigation