Skip to main content
Log in

RNA interference and ion channel physiology

  • Review
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

RNA interference (RNAi), through expression of small, double-stranded RNAs or short hairpin RNAs, produces sequence-specific mRNA degradation and decreased gene expression. Since its discovery in 1998 (Fire et al., 1998, Nature 391, 806–811), RNAi has rapidly become one of the most widely used technologies for exploring gene function in eukaryotic cells. Although the topic of RNAi has been the subject of a large number of excellent reviews, the focus of this article is on its application to the study of ion channel physiology in animal cells. In this regard, RNAi has provided definitive identification of ion channel subtypes responsible for both basal and stimulated ion conduction across the plasma membrane of several cell types. The approach has been particularly effective in identifying and establishing the contribution of auxiliary subunits and regulatory proteins to the overall function of ion channel complexes. Moreover, selective knockdown of ion channel expression has been a valuable means of demonstrating roles in the development of specific cell domains and in the normal growth of certain cell types. In this review, a brief description of the general mechanism of RNAi is presented, followed by a discussion of some important considerations for the in vitro application of this technology and in producing transgenic animals as models for human disease. We then describe several examples of where RNAi has been used to investigate the physiological role of ion channels in cells from model organisms (Caenorhabditis elegans and Drosophila melanogaster) and in mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geley, S., and Muller, C. (2004) RNAi: ancient mechanism with a promising future. Exp. Gerontol. 39, 985–998.

    PubMed  CAS  Google Scholar 

  2. Joost Haasnoot, P. C., Cupac, D., and Berkhout, B. (2003) Inhibition of virus replication by RNA interference. J. Biomed. Sci. 10, 607–616.

    Article  CAS  Google Scholar 

  3. Bagasra, O., and Prilliman K. R. (2004) RNA interference: the molecular immune system. J. Mol. Histol. 35, 545–553.

    PubMed  CAS  Google Scholar 

  4. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.

    PubMed  CAS  Google Scholar 

  5. Vaucheret, H., Beclin, C., and Fagard, M. (2001) Post-transcriptional gene silencing in plants. J. Cell. Sci. 114, 3083–3091.

    PubMed  CAS  Google Scholar 

  6. Fagard, M., Boutet, S., Morel, J. B., Bellini, C., and Vaucheret, H. (2000) AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc. Natl. Acad. Sci. USA 97, 11650–11654.

    PubMed  CAS  Google Scholar 

  7. Montgomery, M. K., Xu, S., and Fire, A. (1998) RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 95, 15502–15507.

    PubMed  CAS  Google Scholar 

  8. Huppi, K., Martin, S. E., and Caplen, N. J. (2005) Defining and assaying RNAi in mammalian cells. Mol. Cell 17, 1–10.

    PubMed  CAS  Google Scholar 

  9. Sontheimer, E. J. (2005) Assembly and function of RNA silencing complexes. Nat. Rev. Mol. Cell. Biol. 6, 127–138.

    PubMed  CAS  Google Scholar 

  10. Scherr, M., Morgan, M. A., and Eder, M. (2003) Gene silencing mediated by small interfering RNAs in mammalian cells. Curr. Med. Chem. 10, 245–256.

    PubMed  CAS  Google Scholar 

  11. Zilberstein, A., Kimchi, A., Schmidt, A., and Revel, M. (1978) Isolation of two interferon-induced translational inhibitors: a protein kinase and an oligo-isoadenylate synthetase. Proc. Natl. Acad. Sci. USA 75, 4734–4738.

    PubMed  CAS  Google Scholar 

  12. Farrell, P. J., Sen, G. C., Dubois, M. F., Ratner, L., Slattery, E., and Lengyel, P. (1978) Interferon action: two distinct pathways for inhibition of protein synthesis by double-stranded RNA. Proc. Natl. Acad. Sci. USA 75, 5893–5897.

    PubMed  CAS  Google Scholar 

  13. Caplen, N. J., and Mousses, S. (2003) Short interfering RNA (siRNA)-mediated RNA interference (RNAi) in human cells. Ann. N. Y. Acad. Sci. 1002, 56–62.

    PubMed  CAS  Google Scholar 

  14. Hannon, G. J., and Conklin, D. S. (2004) RNA interference by short hairpin RNAs expressed in vertebrate cells. Meth. Mol. Biol. 257, 255–266.

    CAS  Google Scholar 

  15. Hannon, G. J. (2002) RNA interference. Nature 418, 244–251.

    PubMed  CAS  Google Scholar 

  16. Bantounas, I., Phylactou, L. A., and Uney, J. B. (2004) RNA interference and the use of small interfering RNA to study gene function in mammalian systems. J. Mol. Endocrinol. 33, 545–557.

    PubMed  CAS  Google Scholar 

  17. Mocellin, S., and Provenzano, M. (2004) RNA interference: learning gene knock-down from cell physiology. J. Transl. Med. 2, 39.

    PubMed  Google Scholar 

  18. Calderon, A. J., and Lavergne, J. A. (2005) RNA interference: a novel and physiologic mechanism of gene silencing with great therapeutic potential. P. R. Health Sci. J. 24, 27–33.

    PubMed  Google Scholar 

  19. Knight, S. W., and Bass, B. L. (2001) A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293, 2269–2271.

    PubMed  CAS  Google Scholar 

  20. Pham, J. W., Pellino, J. L., Lee, Y. S., Carthew, R. W., and Sontheimer, E. J. (2004) A Dicer-2-dependent 80s complex cleaves targeted mRNAs during RNAi in Drosophila. Cell 117, 83–94.

    PubMed  CAS  Google Scholar 

  21. Lee, Y. S., Nakahara, K., Pham, J. W., et al. (2004) Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117, 69–81.

    PubMed  CAS  Google Scholar 

  22. Tijsterman, M., and Plasterk R. H. (2004) Dicers at RISC; the mechanism of RNAi. Cell 117, 1–3.

    PubMed  CAS  Google Scholar 

  23. Bernstein, E., Kim, S. Y., Carmell, M. A., et al. (2003) Dicer is essential for mouse development. Nat. Genet. 35, 215–217.

    PubMed  CAS  Google Scholar 

  24. Yang, W. J., Yang D. D., Na, S., Sandusky, G. E., Zhang, Q., and Zhao, G. (2005) Dicer is required for embryonic angiogenesis during mouse development. J. Biol. Chem. 280, 9330–9335.

    PubMed  CAS  Google Scholar 

  25. Fortin, K. R., Nicholson, R. H., and Nicholson, A. W. (2002) Mouse ribonuclease III. cDNA structure, expression analysis, and chromosomal location. BMC Genom. 3, 26.

    Google Scholar 

  26. Nicholson, R. H., and Nicholson, A. W. (2002) Molecular characterization of a mouse cDNA encoding Dicer, a ribonuclease III ortholog involved in RNA interference. Mamm. Genome 13, 67–73.

    PubMed  CAS  Google Scholar 

  27. Provost, P., Dishart, D., Doucet, J., Frendewey, D., Samuelsson, B., and Radmark, O. (2002) Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J. 21, 5864–5874.

    PubMed  CAS  Google Scholar 

  28. Zhang, H., Kolb, F. A., Brondani, V., Billy, E., and Filipowicz, W. (2002) Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J. 21, 5875–5885.

    PubMed  CAS  Google Scholar 

  29. Kolb, F. A., Zhang, H., Jaronczyk, K., Tahbaz, N., Hobman, T. C., and Filipowicz, W. (2005) Human dicer: purification, properties, and interaction with PAZ PIWI domain proteins. Meth. Enzymol. 392, 316–336.

    PubMed  CAS  Google Scholar 

  30. Tahbaz, N., Kolb, F. A., Zhang, H., Jaronczyk, K., Filipowicz, W., and Hobman, T. C. (2004) Characterization of the interactions between mammalian PAZ PIWI domain proteins and Dicer. EMBO Rep. 5, 189–194.

    PubMed  CAS  Google Scholar 

  31. Blaszczyk, J., Gan, J., Tropea, J. E., Court, D. L., Waugh, D. S., and Ji, X. (2004) Noncatalytic assembly of ribonuclease III with double-stranded RNA. Structure (Camb). 12, 457–466.

    CAS  Google Scholar 

  32. Blaszczyk, J., Tropea, J. E., Bubunenko, M., et al. (2001) Crystallographic and modeling studies of RNase III suggest a mechanism for double-stranded RNA cleavage. Structure (Camb). 9, 1225–1236.

    CAS  Google Scholar 

  33. Liu, Q., Rand, T. A., Kalidas, S., et al. (2003) R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301, 1921–1925.

    PubMed  CAS  Google Scholar 

  34. Parrish, S., and Fire, A. (2001) Distinct roles for RDE-1 and RDE-4 during RNA interference in Caenorhabditis elegans. RNA 7, 1397–1402.

    PubMed  CAS  Google Scholar 

  35. Sen, G. L., and Blau, H. M. (2005) Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat. Cell. Biol. 7, 633–636.

    PubMed  CAS  Google Scholar 

  36. Lingel, A., and Izaurralde, E. (2004) RNAi: finding the elusive endonuclease. RNA 10, 1675–1679.

    PubMed  CAS  Google Scholar 

  37. Carmell, M. A., Xuan, Z., Zhang, M. Q., and Hannon, G. J. (2002) The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev. 16, 2733–2742.

    PubMed  CAS  Google Scholar 

  38. Williams, R. W., and Rubin, G.M. (2002) ARGONAUTE1 is required for efficient RNA interference in Drosophila embryos. Proc. Natl. Acad. Sci. USA 99, 6889–6894.

    PubMed  CAS  Google Scholar 

  39. Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R., and Hannon, G. J. (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science, 293, 1146–1150.

    PubMed  CAS  Google Scholar 

  40. Caudy, A. A., Myers, M., Hannon, G. J., and Hammond, S. M. (2002) Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev. 16, 2491–2496.

    PubMed  CAS  Google Scholar 

  41. Scadden, A. D. (2005) The RISC subunit Tudor-SN binds to hyper-edited double-stranded RNA and promotes its cleavage. Nat. Struct. Mol. Biol. 12, 489–496.

    PubMed  CAS  Google Scholar 

  42. Schwarz, D. S., Tomari, Y., and Zamore, P. D. (2004) The RNA-induced silencing complex is a Mg2+-dependent endonuclease. Curr. Biol. 14, 787–791.

    PubMed  CAS  Google Scholar 

  43. Caudy, A. A., and Hannon, G. J. (2004) Induction and biochemical purification of RNA-induced silencing complex from Drosophila S2 cells. Meth. Mol. Biol. 265, 59–72.

    CAS  Google Scholar 

  44. Caudy, A. A., Ketting, R. F., Hammond, S. M. et al. (2003) A micrococcal nuclease homologue in RNAi effector complexes. Nature 425, 411–414.

    PubMed  CAS  Google Scholar 

  45. Tang, G. (2005) siRNA and miRNA: an insight into RISCs. Trends Biochem. Sci. 30, 106–114.

    PubMed  CAS  Google Scholar 

  46. Nakahara, K., and Carthew, R. W. (2004) Expanding roles for miRNAs and siRNAs in cell regulation. Curr. Opin. Cell. Biol. 16, 127–133.

    PubMed  CAS  Google Scholar 

  47. Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function.Cell 116, 281–297.

    PubMed  CAS  Google Scholar 

  48. Nelson, P., Kiriakidou, M., Sharma, A., Maniataki, E., and Mourelatos, Z. (2003) The microRNA world: small is mighty. Trends Biochem. Sci. 28, 534–540.

    PubMed  CAS  Google Scholar 

  49. Mourelatos, Z., Dostie, J., Paushkin, S. et al. (2002) miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev. 16, 720–728.

    PubMed  CAS  Google Scholar 

  50. Noma, K., Sugiyama, T., Cam, H., et al. (2004) RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing. Nat. Genet. 36, 1174–1180.

    PubMed  CAS  Google Scholar 

  51. Ekwall, K. (2004) The RITS complex-A direct link between small RNA and heterochromatin. Mol. Cell 13, 304–305.

    PubMed  CAS  Google Scholar 

  52. Verdel, A., Jia, S., Gerber, S., et al. (2004) RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672–676.

    PubMed  CAS  Google Scholar 

  53. Schramke, V., Sheedy, D. M., Denli, A. M., et al. (2005) RNA-interference-directed chromatin modification coupled to RNA polymerase II transcription. Nature 435, 1275–1279.

    PubMed  CAS  Google Scholar 

  54. Buratowski, S., and Moazed, D. (2005) Gene regulation: expression and silencing coupled. Nature 435, 1174–1175.

    PubMed  CAS  Google Scholar 

  55. Elbashir, S. M., Lendeckel, W., and Tuschl, T. (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188–200.

    PubMed  CAS  Google Scholar 

  56. Siolas, D., Lerner, C., Burchard J., et al. (2005) Synthetic shRNAs as potent RNAi triggers. Nat. Biotechnol. 23, 227–231.

    PubMed  CAS  Google Scholar 

  57. Schwarz, D. S., Hutvagner, G., Du, T., Xu, Z., Aronin, N., and Zamore, P. D. (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208.

    PubMed  CAS  Google Scholar 

  58. Khvorova, A., Reynolds, A., and Jayasena, S. D. (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216.

    PubMed  CAS  Google Scholar 

  59. Mathews, D. H., Sabina, J., Zuker, M., and Turner, D. H. (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288, 911–940.

    PubMed  CAS  Google Scholar 

  60. Xia, T., SantaLucia, J. Jr., Burkard, M. E., et al. (1998) Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. Biochemistry 37, 14719–14735.

    PubMed  CAS  Google Scholar 

  61. Ui-Tei, K., Naito, Y., Takahashi, F., et al. (2004) Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucl. Acids Res. 32, 936–948.

    PubMed  CAS  Google Scholar 

  62. Reynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W. S., and Khvorova, A. (2004) Rational siRNA design for RNA interference. Nat. Biotechnol. 22, 326–330.

    PubMed  CAS  Google Scholar 

  63. Hasuwa, H., Kaseda, K., Einarsdottir, T., and Okabe, M. (2002) Small interfering RNA and gene silencing in transgenic mice and rats. FEBS Lett. 532, 227–230.

    PubMed  CAS  Google Scholar 

  64. Bertrand, J. R., Pottier, M., Vekris, A., Opolon, P., Maksimenko, A., and Malvy, C. (2002) Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochem. Biophys. Res. Commun. 296, 1000–1004.

    PubMed  CAS  Google Scholar 

  65. Elbashir, S. M., Harborth, J., Weber, K., and Tuschl, T. (2002) Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26, 199–213.

    PubMed  CAS  Google Scholar 

  66. Kim, M. H., Yuan, X., Okumura, S., and Ishikawa, F. (2002) Successful inactivation of endogenous Oct-3/4 and c-mos genes in mouse preimplantation embryos and oocytes using short interfering RNAs. Biochem. Biophys. Res. Commun. 296, 1372–1377.

    PubMed  CAS  Google Scholar 

  67. McManus, M. T., and Sharp, P. A. (2002) Gene silencing in mammals by small interfering RNAs. Nat. Rev. Genet. 3, 737–747.

    PubMed  CAS  Google Scholar 

  68. Yu, J. Y., DeRuiter, S. L., and Turner, D. L. (2002) RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 6047–6052.

    PubMed  CAS  Google Scholar 

  69. Rubinson, D. A., Dillon, C. P., Kwiatkowski, A. V., et al. (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet. 33, 401–406.

    PubMed  CAS  Google Scholar 

  70. Yokota, T., Sakamoto, N., Enomoto, N., et al. (2003) Inhibition of intracellular hepatitis C virus replication by synthetic and vector-derived small interfering RNAs. EMBO Rep. 4, 602–608.

    PubMed  CAS  Google Scholar 

  71. Paddison, P. J., Caudy, A. A., and Hannon, G. J. (2002) Stable suppression of gene expression by RNAi in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 1443–1448.

    PubMed  CAS  Google Scholar 

  72. Grishok, A., Pasquinelli, A. E., Conte, D., et al. (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23–34.

    PubMed  CAS  Google Scholar 

  73. Hutvagner, G., McLachlan, J., Pasquinelli, A. E., Balint, E., Tuschl, T., and Zamore, P. D. (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838.

    PubMed  CAS  Google Scholar 

  74. Ketting, R. F., Fischer, S. E., Bernstein, E., Sijen, T., Hannon, G. J., and Plasterk, R. H. (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 15, 2654–2659.

    PubMed  CAS  Google Scholar 

  75. Jackson, A. L., Bartz, S. R., Schelter, J., et al. (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 21, 635–637.

    PubMed  CAS  Google Scholar 

  76. Martinez, J., and Tuschl, T. (2004) RISC is a 5′ phosphomonoester-producing RNA endonuclease. Genes Dev. 18, 975–980.

    PubMed  CAS  Google Scholar 

  77. Haley, B., and Zamore P. D. (2004) Kinetic analysis of the RNAi enzyme complex. Nat. Struct. Mol. Biol. 11, 599–606.

    PubMed  CAS  Google Scholar 

  78. Semizarov, D., Frost, L., Sarthy, A., et al. (2003) Specificity of short interfering RNA determined through gene expression signatures. Proc. Natl. Acad. Sci. USA 100, 6347–6352.

    PubMed  CAS  Google Scholar 

  79. Doench, J. G., and Sharp, P. A. (2004) Specificity of microRNA target selection in translational repression. Genes Dev. 18, 504–511.

    PubMed  CAS  Google Scholar 

  80. Manche, L., Green, S. R., Schmedt, C., and Mathews, M. B. (1992) Interactions between double-stranded RNA regulators and the protein kinase DAI. Mol. Cell. Biol. 12, 5238–5248.

    PubMed  CAS  Google Scholar 

  81. Nanduri, S., Carpick, B. W., Yang, Y., Williams, B. R., and Qin, J. (1998) Structure of the double-stranded RNA-binding domain of the protein kinase PKR reveals the molecular basis of its dsRNA-mediated activation. EMBO J. 17, 5458–5465.

    PubMed  CAS  Google Scholar 

  82. Cargill, M., Altshuler, D., Ireland J., et al. (1999) Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat. Genet. 22, 231–8.

    PubMed  CAS  Google Scholar 

  83. Nelson, M. R., Marnellos, G., Kammerer, S., et al. (2004) Large-scale validation of single nucleotide polymorphisms in gene regions. Gen. Res. 14, 1664–1668.

    CAS  Google Scholar 

  84. Kunath, T., Gish, G., Lickert, H., Jones, N., Pawson, T., and Rossant, J. (2003) Transgenic RNA interference in ES cell-derived embryos recapitulates a genetic null phenotype. Nat. Biotechnol. 21, 559–561.

    PubMed  CAS  Google Scholar 

  85. Lickert, H., Takeuchi, J. K., Von Both, I., et al. (2004) Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature 432, 107–112.

    PubMed  CAS  Google Scholar 

  86. Lickert, H., Cox, B., Wehrle, C., Taketo, M. M., Kemler, R., and Rossant, J. (2005) Dissecting Wnt/{beta}-catenin signaling during gastrulation using RNA interference in mouse embryos. Development 132, 2599–2609.

    PubMed  CAS  Google Scholar 

  87. Haraguchi, S., Saga, Y., Naito, K., Inoue, H., and Seto, A. (2004) Specific gene silencing in the pre-implantation stage mouse embryo by an siRNA expression vector system. Mol. Reprod. Dev. 68, 17–24.

    PubMed  CAS  Google Scholar 

  88. Carmell, M. A., Zhang, L., Conklin, D. S., Hannon, G. J., and Rosenquist, T. A. (2003) Germline transmission of RNAi in mice. Nat. Struct. Biol. 10, 91–92.

    PubMed  CAS  Google Scholar 

  89. Cao, W., Hunter, R., Strnatka, D., McQueen, C. A., and Erickson, R. P. (2005) DNA constructs designed to produce short hairpin, interfering RNAs in transgenic mice sometimes show early lethality and an interferon response. J. Appl. Genet. 46, 217–225.

    PubMed  Google Scholar 

  90. Sugamori, K. S., Wong, S., Gaedigk, A. et al. (2003) Generation and functional characterization of arylamine N-acetyltransferase Nat1/Nat2 double-knockout mice. Mol. Pharmacol. 64, 170–179.

    PubMed  CAS  Google Scholar 

  91. Cornish, V. A., Pinter, K., Boukouvala, S., et al. (2003) Generation and analysis of mice with a targeted disruption of the arylamine N-acetyltransferase type 2 gene. Pharmacogenom. J. 3, 169–177.

    CAS  Google Scholar 

  92. Bridge, A. J., Pebernard, S., Ducraux, A., Nicoulaz, A. L., and Iggo, R. (2003) Induction of an interferon response by RNAi vectors in mammalian cells. Nat. Genet. 34, 263–264.

    PubMed  CAS  Google Scholar 

  93. Sledz, C. A., Holko, M., de Veer, M. J., Silverman, R. H., and Williams, B. R. (2003) Activation of the interferon system by short-interfering RNAs. Nat. Cell. Biol. 5, 834–839.

    PubMed  CAS  Google Scholar 

  94. Pebernard, S., and Iggo, R. D. (2004) Determinants of interferon-stimulated gene induction by RNAi vectors. Differentiation 72, 103–111.

    PubMed  CAS  Google Scholar 

  95. Ventura, A., Meissner, A., Dillon, C. P. et al. (2004) Crelox-regulated conditional RNA interference from transgenes. Proc. Natl. Acad. Sci. USA 101, 10380–10385.

    PubMed  CAS  Google Scholar 

  96. Tiscornia, G., Tergaonkar, V., Galimi, F., and Verma, I. M. (2004) CRE recombinase-inducible RNA interference mediated by lentiviral vectors. Proc. Natl. Acad. Sci. USA 101, 7347–7351.

    PubMed  CAS  Google Scholar 

  97. Ivics, Z., and Izsvak, Z. (2004) Transposable elements for transgenesis and insertional mutagenesis in vertebrates: a contemporary review of experimental strategies. Meth. Mol. Biol. 260, 255–276.

    CAS  Google Scholar 

  98. Ivics, Z., Kaufman, C. D., Zayed, H., Miskey, C., Walisko, O., and Izsvak, Z. (2004) The Sleeping Beauty transposable element: evolution, regulation and genetic applications. Curr. Issues Mol. Biol. 6, 43–55.

    PubMed  CAS  Google Scholar 

  99. Ivics, Z., Hackett, P. B., Plasterk, R. H., and Izsvak, Z. (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91, 501–510.

    PubMed  CAS  Google Scholar 

  100. Caldovic, L., and Hackett, P. B., Jr. (1995) Development of position-independent expression vectors and their transfer into transgenic fish. Mol. Mar. Biol. Biotechnol. 4, 51–61.

    PubMed  CAS  Google Scholar 

  101. Iyengar, A., Muller, F., and Maclean, N. (1996) Regulation and expression of transgenes in fish—a review. Transgenic Res. 5, 147–166.

    PubMed  CAS  Google Scholar 

  102. Dorer, D. R., and Henikoff, S. (1997) Transgene repeat arrays interact with distant heterochromatin and cause silencing in cis and trans. Genetics 147, 1181–1190.

    PubMed  CAS  Google Scholar 

  103. Garrick, D., Fiering, S., Martin, D. I., and Whitelaw, E. (1998) Repeat-induced gene silencing in mammals. Nat. Genet. 18, 56–59.

    PubMed  CAS  Google Scholar 

  104. Henikoff, S. (1998) Conspiracy of silence among repeated transgenes. Bioessays 20, 532–535.

    PubMed  CAS  Google Scholar 

  105. Luo, G., Ivics, Z., Izsvak, Z., and Bradley, A. (1998) Chromosomal transposition of a Tc1/mariner-like element in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA 95, 10769–10773.

    PubMed  CAS  Google Scholar 

  106. Yant, S. R. Meuse, L., Chiu, W., Ivics, Z., Izsvak, Z., and Kay, M. A. (2000) Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nat. Genet. 25, 35–41.

    PubMed  CAS  Google Scholar 

  107. Dupuy, A. J., Clark, K., Carlson, C. M., et al. (2002) Mammalian germ-line transgenesis by transposition. Proc. Natl. Acad. Sci. USA 99, 4495–4499.

    PubMed  CAS  Google Scholar 

  108. Fischer, S. E., Wienholds, E., and Plasterk, R. H. (2001) Regulated transposition of a fish transposon in the mouse germ line. Proc. Natl. Acad. Sci. USA 98, 6759–6764.

    PubMed  CAS  Google Scholar 

  109. Horie, K., Kuroiwa, A., Ikawa, M., et al. (2001) Efficient chromosomal transposition of a Tc1/mariner- like transposon Sleeping Beauty in mice. Proc. Natl. Acad. Sci. USA 98, 9191–9196.

    PubMed  CAS  Google Scholar 

  110. Geurts, A. M., Yang, Y., Clark, K. J., et al. (2003) Gene transfer into genomes of human cells by the sleeping beauty transposon system. Mol. Ther. 8, 108–117.

    PubMed  CAS  Google Scholar 

  111. Karsi, A., Moav, B., Hackett, P., and Liu, Z. (2001) Effects of insert size on transposition efficiency of the sleeping beauty transposon in mouse cells. Mar. Biotechnol. (NY) 3, 241–245.

    CAS  Google Scholar 

  112. Gurney, A. M., and Hunter, E. (2005) The use of small interfering RNA to elucidate the activity and function of ion channel genes in an intact tissue. J. Pharmacol. Toxicol. Meth. 51, 253–262.

    CAS  Google Scholar 

  113. Santi, C. M., Yuan, A., Fawcett, G., et al. (2003) Dissection of K+ currents in Caenorhabditis elegans muscle cells by genetics and RNA interference. Proc. Natl. Acad. Sci. USA 100, 14391–14396.

    PubMed  CAS  Google Scholar 

  114. Bianchi, L., Kwok, S. M., Driscoll, M., and Sesti, F. (2003) A potassium channel-MiRP complex controls neurosensory function in Caenorhabditis elegans. J. Biol. Chem. 278, 12415–12424.

    PubMed  CAS  Google Scholar 

  115. McCrossan, Z. A., and Abbott, G. W. (2004) The MinK-related peptides. Neuropharmacology 47, 787–821.

    PubMed  CAS  Google Scholar 

  116. Cai, S. Q., Hernandez, L., Wang, Y., Park, K. H., and Sesti, F. (2005) MPS-1 is a K(+) channel beta-subunit and a serine/threonine kinase. Nat. Neurosci. 8, 1503–1509.

    PubMed  CAS  Google Scholar 

  117. Rutledge, E., Bianchi, L., Christensen, M., et al. (2001) CLH-3, a ClC-2 anion channel ortholog activated during meiotic maturation in C. elegans oocytes. Curr. Biol. 11, 161–170.

    PubMed  CAS  Google Scholar 

  118. Rieckhof, G. E., Yoshihara, M., Guan, Z., and Littleton, J. T. (2003) Presynaptic N-type calcium channels regulate synaptic growth. J. Biol. Chem. 278, 41099–41108.

    PubMed  CAS  Google Scholar 

  119. Leung, H. T., Geng, C., and Pak, W. L. (2000) Phenotypes of trpl mutants and interactions between the transient receptor potential (TRP) and TRP-like channels in Drosophila. J. Neurosci. 20, 6797–6803.

    PubMed  CAS  Google Scholar 

  120. Yoon, J., Ben-Ami, H. C., Hong, Y. S. et al. (2000) Novel mechanism of massive photoreceptor degeneration caused by mutations in the trp gene of Drosophila. J. Neurosci. 20, 649–659.

    PubMed  CAS  Google Scholar 

  121. Geng, C., Pellegrino, A., Bowman, J., Zhu, L., and Pak, W. L. (2004) Complete RNAi rescue of neuronal degeneration in a constitutively active Drosophila TRP channel mutant. Biochim. Biophys. Acta 1674, 91–97.

    PubMed  CAS  Google Scholar 

  122. Liu, L., Johnson, W. A., and Welsh, M. J. (2003) Drosophila DEG/ENaC pickpocket genes are expressed in the tracheal system, where they may be involved in liquid clearance. Proc. Natl. Acad. Sci. USA 100, 2128–2133.

    PubMed  CAS  Google Scholar 

  123. Anantharam, A., Lewis, A., Panaghie, G., et al. (2003) RNA interference reveals that endogenous Xenopus MinK-related peptides govern mammalian K+ channel function in oocyte expression studies. J. Biol. Chem. 278, 11739–11745.

    PubMed  CAS  Google Scholar 

  124. Duta, V., Szkotak, A. J., Nahirney, D., and Duszyk, M. (2004) The role of bestrophin in airway epithelial ion transport. FEBS Lett. 577, 551–554.

    PubMed  CAS  Google Scholar 

  125. Palmer, M. L., Lee, S. Y., Carlson, D., Fahrenkrug, S. C., and O'Grady, S. M. (2006) Stable knockdown of CFTR establishes a role for the channel in P2Y receptor-stimulated anion secretion. J. Cell Physiol. 206, 759–770.

    PubMed  CAS  Google Scholar 

  126. Liang, L., Zsembery, A., and Schwiebert, E. M. (2005) RNA interference targeted to multiple P2X receptor subtypes attenuates zinc-induced calcium entry. Am. J. Physiol. Cell. Physiol. 289, C388-C3896.

    PubMed  CAS  Google Scholar 

  127. Zsembery, A., Boyce, A. T., Liang, L., Peti-Peterdi, J., Bell, P. D., and Schwiebert, E. M. (2003) Sustained calcium entry through P2X nucleotide receptor channels in human airway epithelial cells. J. Biol. Chem. 278, 13398–13408.

    PubMed  CAS  Google Scholar 

  128. Snyder, P. M., Steines, J. C., and Olson, D. R. (2004) Relative contribution of Nedd4 and Nedd4-2 to ENaC regulation in epithelia determined by RNA interference. J. Biol. Chem. 279, 5042–5046.

    PubMed  CAS  Google Scholar 

  129. Xu, X., and Shrager, P. (2005) Dependence of axon initial segment formation on Na+ channel expression. J. Neurosci. Res. 79, 428–441.

    PubMed  CAS  Google Scholar 

  130. Malhotra, J. D., Koopmann, M. C., Kazen-Gillespie, K. A., Fettman, N., Hortsch, M., and Isom, L. L. (2002) Structural requirements for interaction of sodium channel beta 1 subunits with ankyrin. J. Biol. Chem. 277, 26681–26688.

    PubMed  CAS  Google Scholar 

  131. Corey, D. P., Garcia-Anoveros, J., Holt, J. R., et al. (2004) TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432, 723–730.

    PubMed  CAS  Google Scholar 

  132. Watanabe, A., Arai, M., Yamazaki, M., Koitabashi, N., Wuytack, F. and Kurabayashi, M. (2004) Phospholamban ablation by RNA interference increases Ca2+ uptake into rat cardiac myocyte sarcoplasmic reticulum. J. Mol. Cell. Cardiol. 37, 691–698.

    PubMed  CAS  Google Scholar 

  133. McCrossan, Z. A., Lewis, A., Panaghie, G., Jet al. (2003) MinK-related peptide 2 modulates Kv2.1 and Kv3.1 potassium channels in mammalian brain. J. Neurosci. 23, 8077–8091.

    PubMed  CAS  Google Scholar 

  134. Williams, S. E., Wootton, P., Mason, H. S., et al. (2004) Hemoxygenase-2 is an oxygen sensor for a calcium-sensitive potassium channel. Science 306, 2093–2097.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott M. O'Grady.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, M.L., Fahrenkrug, S.C. & O'Grady, S.M. RNA interference and ion channel physiology. Cell Biochem Biophys 46, 175–191 (2006). https://doi.org/10.1385/CBB:46:2:175

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:46:2:175

Intex Entries

Navigation