Skip to main content
Log in

Use of adenoviruses to study isoform specificity of G-protein-receptor-coupled Ca2+ signaling in intact epithelial cells

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

It is firmly established that the activation of many heptahelical receptors by extracellular agonists leads to the activation of effectors such as phospholipase Cβ (PLCβ), the subsequent production of inositol-1,4,5-trisphosphate (IP3), and a resultant increase in intracellular free Ca2+. Heterotrimeric G-proteins have a critical role in transducing the signal from the hepthalelical receptor to PLCβ and in determining the specificity and duration of the cellular responses. There remain, however, a number of areas of uncertainty regarding the exact mechanisms involved in regulating G-protein-mediated receptor-effector coupling in different cell types. For example, the molecular identity of the G-protein involved and the degree of isoform specificity among G-proteins of the same family and their receptors remains unclear. It is also not known in many cell types whether it is the α-or the βλ-subunits of these G-proteins that activate PLCβ. In order to address these issues, we have used replication-deficient adenoviruses as a tool to deliver, into intact epithelial cells, transgenes coding for proteins involved in G-protein-couplied receptor signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hamm, H. E. (1998) The many faces of G protein signaling. J. Biol. Chem. 273, 669–672.

    Article  PubMed  CAS  Google Scholar 

  2. Morris, A. J. and Malbon, C. C. (1999) Physiological regulation of G protein-linked signaling. Physiol. Rev. 79, 1373–1430.

    PubMed  CAS  Google Scholar 

  3. Choukroun, G., Hajjar, R., Fry, S., del Monte, F., Haq, S., Guerrero, J. L., et al. (1999) Regulation of cardiac hypertrophy in vivo by the stress-activated protein kinases/c-Jun NH2-terminal kinases. J. Clin. Invest. 104, 391–398.

    Article  PubMed  CAS  Google Scholar 

  4. Adams, J. W., Sakata, Y., Davis, M. G., Sah, V. P., Wang, Y., Liggett, S. B., et al. (1998) Enhanced Gαq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc. Natl. Acad. Sci. USA 95, 10,140–10,145.

    Article  CAS  Google Scholar 

  5. Akhter, S. A., Skaer, C. A., Kypson, A. P., McDonald, P. H., Peppel, K. C., Glower, D. D., et al. (1997) Restoration of b-adrenergic signaling in failing cardiac ventricular myocytes via adenoviral-mediated gene transfer. Proc. Natl. Acad. Sci. USA 94, 12,100–12,105.

    Article  CAS  Google Scholar 

  6. Müller-Ladner, U., Gay, R. E., and Gay, S. (1999) Signaling and effector pathways. Curr. Opin. Rheumatol. 11, 194–201.

    Article  PubMed  Google Scholar 

  7. Edwards, S. W., Tan, C. M., and Limbird, L. E. (2000) Localization of G-protein-coupled receptors in health and disease. Trends Pharmacol. Sci. 21, 304–308.

    Article  PubMed  CAS  Google Scholar 

  8. Brown, E. M., Pollak, M., and Hebert, S. C. (1998) The extracellular calcium-sensing receptor: its role in health and disease. Annu. Rev. Med. 49, 15–29.

    Article  PubMed  CAS  Google Scholar 

  9. Gurrath, M. (2001) Peptide-binding G protein-coupled receptors: new opportunities for drug design. Curr. Med. Chem. 8, 1257–1299.

    Google Scholar 

  10. Barritt, G. J. (1999) Receptor-activated Ca2+ inflow in animal cells: a variety of pathways tailored to meet different intracellular Ca2+ signalling requirements. Biochem. J. 337, 153–169.

    Article  PubMed  CAS  Google Scholar 

  11. Parekh, A. B. and Penner, R. (1997) Store depletion and calcium influx. Physiol. Rev. 77, 901–930.

    PubMed  CAS  Google Scholar 

  12. Petersen, O. H., Burdakov, D., and Tepikin, A. V. (1999) Polarity in intracellular calcium signaling. Bioessays 21, 851–860.

    Article  PubMed  CAS  Google Scholar 

  13. Gautam, N., Downes, G. B., Yan, K., and Kisselev, O. (1998) The G-protein βλ complex. Cell Signal. 10, 447–455.

    Article  PubMed  CAS  Google Scholar 

  14. Cummins, M. M., Poronnik, P., O'Mullane, L. M., and Cook, D. I. (2000) Studying heterotrimeric G-protein-linked signal transduction using replication-deficient adenoviruses. Immunol. Cell. Biol. 78, 375–386.

    Article  PubMed  CAS  Google Scholar 

  15. Barritt, G. J. and Gregory, R. B. (1997) An evaluation of strategies available for the identification of GTP-binding proteins required in intracellular signalling pathways. Cell Signal. 9, 207–218.

    Article  PubMed  CAS  Google Scholar 

  16. Macrez-Lepretre, N., Kalkbrenner, F., Schultz, G., and Mironneau, J. (1997) Distinct functions of Gq and G11 proteins in coupling α1-adrenoreceptors to Ca2+-release and Ca2+ entry in rat portal vein myocytes. J Biol. Chem. 272, 5261–5268.

    Article  PubMed  CAS  Google Scholar 

  17. Dippel, E., Kalkbrenner, F., Wittig, B., and Schultz, G. (1996) A heterotrimeric G protein complex couples the muscarinic ml receptor to phospholipase Cβ. Proc. Natl. Acad. Sci. USA 93, 1391–1396.

    Article  PubMed  CAS  Google Scholar 

  18. Xu, X., Kitamura, K., Lau, K. S., Muallem, S., and Miller, R. T. (1995) Differential regulation of Ca2+ release-activated Ca2+ influx by heterotrimeric G proteins. J. Biol. Chem. 270, 29,169–29,175.

    CAS  Google Scholar 

  19. Komwatana, P., Dinudom, A., Young, J. A., and Cook, D. I. (1996) Cytosolic Na+ controls and epithelial Na+ channel via the Go guanine nucleotide-binding regulatory protein. Proc. Natl. Acad. Sci. USA 93, 8107–8111.

    Article  PubMed  CAS  Google Scholar 

  20. Hubner, M., Schreiber, R., Boucherot, A., Sanchez-Perez, A., Poronnik, P., Cook, D. I., et al. (1999) Feedback inhibition of epithelial Na+ channels in Xenopus oocytes does not require Go or Gi2 proteins. FEBS Lett. 459, 443–447.

    Article  PubMed  CAS  Google Scholar 

  21. Dinudom, A., Komwatana, P., Young, J. A., and Cook, D. I. (1995) A forskolin-activated Cl current in mouse mandibular duct cells. Am. J. Physiol. 268, G806-G812.

    PubMed  CAS  Google Scholar 

  22. Hermouet, S., Murakami, T., and Speigel, A. M. (1993) Stable changes in expression or activation of G protein β1 or β2 subunits affect the expression of both β1 and β2 subunits. FEBS Lett. 327, 183–188.

    Article  PubMed  CAS  Google Scholar 

  23. Poronnik, P., O'Mullane, L. M., Harding, E. A., Greger, R., and Cook, D. I. (1998) Use of replication deficient adenoviruses to investigate the role of G proteins in Ca2+ signaling in epithelial cells. Cell Calcium 24, 97–103.

    Article  PubMed  CAS  Google Scholar 

  24. He, T.-C., Zhou, S., da Costa, L. T., Yu, J., Kinzler, K. W., and Vogelstein, B. (1998) A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. USA 95, 2509–2514.

    Article  PubMed  CAS  Google Scholar 

  25. Cummins, M. M., O'Mullane, L. M., Barden, J. A., Cook, D. I., and Poronnik, P. (2000) Purinergic responses in HT29 colonic epithelial cells are mediated by G protein α-subunits. Cell Calcium 27, 247–255.

    Article  PubMed  CAS  Google Scholar 

  26. Hermouet, S., Merendino, J. J., Gutkind, J. S., Gutkind, J. S., and Spiegel, A. M. (1991) Activating and inactivating mutations of the α-subunit of Gi2 protein have opposite effects on proliferation of NIH 3T3 cells. Proc. Natl. Acad. Sci. USA 88, 10,455–10,459.

    Article  CAS  Google Scholar 

  27. Kalinec, G., Nazarali, A. J., Hermouet, S., Xu, N., and Gutkind, J. S. (1992) Mutated α subunit of the Gq protein induces malignant transformation in NIH 3T3 cells. Mol. Cell. Biol. 12, 4687–4693.

    PubMed  CAS  Google Scholar 

  28. Lin, H. C., Duncan, J. A., Kozasa, T., and Gilman, A. G. (1998) Sequestration of the G protein βγ subunit complex inhibits receptor-mediated endocytosis. Proc. Natl. Acad. Sci. USA 95, 5057–5060.

    Article  PubMed  CAS  Google Scholar 

  29. Poronnik, P., O'Mullane, L., Conigrave, A. D., and Cook, D. I. (1999) Replication deficient adenoviruses reveal that muscarinic responses in the epithelia cell lines, HSG and HT29, are mediated by the G protein βγ subunits. Pflügers Archiv. 438, 79–85.

    Article  PubMed  CAS  Google Scholar 

  30. Degtiar, V. E., Wittig, B., Schultz, G., and Kalkbrenner, F. (1998) Microinjection of antisense oligonucleotides and electrophysiological recording of whole-cell currents as tools to identify specific G-protein subtypes coupling hormone receptors to voltage-gated calcium channels. Methods Mol. Biol. 84, 123–136.

    PubMed  CAS  Google Scholar 

  31. Graham, F. and Prevec, L. (1991) Manipulation of adenovirus vectors, in Gene Transfer and Expression Protocols (Murray, E., ed.), Humana, Clifton, NJ, vol. 7, pp. 109–128.

    Chapter  Google Scholar 

  32. Dinudom, A., Poronnik, P., Allen, D. G., Young, J. A., and Cook, D. I. (1993) Control of intracellular Ca2+ by adrenergic and muscarinic agonists in mouse mandibular ducts and end pieces. Cell Calcium 14, 631–638.

    Article  PubMed  CAS  Google Scholar 

  33. Kopp, R., Lambrecht, G., Mutschler, E., Moser, U., Tacke, R., and Pfeiffer, A. (1989) Human HT-29 colon carcinoma cells contain muscarinic M3 receptors coupled to phosphoinositide metabolism. Eur. J. Pharmacol. 172, 397–405.

    Article  PubMed  CAS  Google Scholar 

  34. Parr, C. E., Sullivan, D. M., Paradiso, A. M., Lazarowski, E. R., Burch, L. H., Olsen, J. C., et al. (1994) Cloning and expression of a human P2U nucleotide receptor, a target for cystic fibrosis pharmacotherapy. Proc. Natl. Acad. Sci. USA 91, 3275–3279.

    Article  PubMed  CAS  Google Scholar 

  35. Kitamura, K., Singer, W. D., Cano, A., and Miller, R. T. (1995) Gαq and Gα13 regulate NHE-1 and intracellular calcium in epithelial cells. Am. J. Physiol. 268, C101-C110.

    PubMed  CAS  Google Scholar 

  36. Runnels, L. W. and Scarlata, S. F. (1999) Determination of the affinities between heterotrimeric G protein subunits and their phospholipase Cβ effectors. Biochemistry 38, 1488–1496.

    Article  PubMed  CAS  Google Scholar 

  37. Dowal, L., Elliott, J., Popov, S., Wilkie, T. M., and Scarlata, S. (2001) Determination of the contact energies between a regulator of G protein signaling and G protein subunits and phospholinpase Cβ1 Biochemistry 40, 414–421.

    Article  PubMed  CAS  Google Scholar 

  38. Smrcka, A. V., Hepler, J. R., Brown, K. O., and Sternweis, P. C. (1991) Regulation of polyphosphoinostide-specific phospholipase C activity by purified Gq. Science 251, 804–807.

    Article  PubMed  CAS  Google Scholar 

  39. Exton, J. H. (1996) Regulation of phosphoinositide phospholipases by hormones, neurotransmitters, and other agonists linked to G proteins. Ann. Rev. Pharmacol. Toxicol. 36, 481–509.

    Article  CAS  Google Scholar 

  40. Stehno-Bittel, L., Krapivinsky, G., Krapivinsky, L., Perez-Terzic, C., and Clapham, D. E. (1995) The G protein βγ subunit transduces the muscarinic receptor signal for Ca2+ release in Xenopus oocytes. J. Biol. Chem. 270, 30,068–30,074.

    CAS  Google Scholar 

  41. Zeng, W., Xu, X., and Muallem, S. (1996) Gβγ transduces [Ca2+]i oscillations and Gαq, a sustained response during stimulation of pancreatic acinar cells with [Ca2+]i-mobilizing agents. J. Biol. Chem. 271, 18,520–18,526.

    CAS  Google Scholar 

  42. Arai, H., Tsou, C. L., and Charo, I. F. (1997) Chemotaxis in a lymphocyte cell line transfected with C-C chemokine receptor 2B: evidence that directed migration is mediated by bg dimers released by activation of Gαi-coupled receptors. Proc. Natl. Acad. Sci. USA 94, 14,495–14,499.

    CAS  Google Scholar 

  43. Morel, J. L., Macrez, N., and Mironneau, J. (1997) Specific Gq protein involvement in muscarinic M3 receptor-induced phosphatidylinositol hydrolysis and Ca2+ release in mouse doudenal myocytes. Br. J. Pharmacol. 121, 451–458.

    Article  PubMed  CAS  Google Scholar 

  44. Morris, A. J. and Scarlata, S. (1997) Regulation of effectors by G-protein α- and βγ-subunits. Recent insights from studies of the phospholipase C-β isoenzymes. Biochem. Pharmacol. 54, 429–435.

    Article  PubMed  CAS  Google Scholar 

  45. Fanning, A. S., and Anderson, J. M. (1999) Protein modules as organizers of membrane structure. Curr. Opin. Cell Biol. 11, 432–439.

    Article  PubMed  CAS  Google Scholar 

  46. Nitschke, R., Leipziger, J., and Greger, R. (1993) Agonist-induced intracellular Ca2+ transients in HT29 cells. Pflügers Arch. 423, 519–526.

    Article  PubMed  CAS  Google Scholar 

  47. Muallem, S. and Wilkie, T. M. (1999) G protein-dependent Ca2+ signaling complexes in polarized cells. Cell Calcium 26, 173–180.

    Article  PubMed  CAS  Google Scholar 

  48. Toescu, E. C. and Petersen, O. H. (1995) Regionspecific activity of the plasma membrane Ca2+ pump and delayed activation of Ca2+ entry characterized the polarized, agonist-evoked Ca2+ signals in exocrine cells. J. Biol. Chem. 270, 8528–8535.

    Article  PubMed  CAS  Google Scholar 

  49. Park, M. K., Petersen, O. H., and Tepikin, A. V. (2000) The endoplasmic reticulum as one continuous Ca2+ pool: visualization of rapid Ca2+ movements and equilibration. EMBO J. 19, 5729–5739.

    Article  PubMed  CAS  Google Scholar 

  50. Petersen, O. H., Tepikin, A., and Park, M. K. (2001) The endoplasmic reticulum: one continuous or several separate Ca2+ stores? Trends Neurosci. 24, 271–276.

    Article  PubMed  CAS  Google Scholar 

  51. Xu, X., Croy, J. T., Zeng, W., Zhao, L., Davignon, I., Popov, S., et al. (1998) Promiscuous coupling of receptors to Gq class α-subunits and effector proteins in pancreatic and submandibular gland cells. J. Biol. Chem. 273, 27,275–27,279.

    CAS  Google Scholar 

  52. Montell, C. (1998) TRP trapped in fly signaling web. Curr. Opin. Neurobiol. 8, 389–397.

    Article  PubMed  CAS  Google Scholar 

  53. Weinman, E. J., Steplock, D., Donowitz, M., and Shenolikar, S. (2000) NHERF associations with sodium-hydrogen exchanger isoform 3 (NHE3) and ezrin are essential for cAMP-mediated phosphorylation and inhibition of NHE3. Biochemistry 39, 6123–6129.

    Article  PubMed  CAS  Google Scholar 

  54. Shin, D. M., Zhao, X. S., Zeng, W., Mozhayeva, M., and Muallem, S. (2000) The mammalian Sec6/8 complex interacts with Ca2+ signaling complexes and regulates their activity. J. Cell. Biol. 150, 1101–1112.

    Article  PubMed  CAS  Google Scholar 

  55. Huizen, R. V., Miller, K., Chen, D. M., Li, Y., Lai, Z. C., Raab, R. W., et al. (1998) Two distantly positioned PDZ domains mediate multivalent INAD-phopholipase C interactions essential for G protein-coupled signaling. EMBO J. 17, 2285–2297.

    Article  PubMed  Google Scholar 

  56. Tang, Y., Tang, J., Chen, Z., Trost, C., Flockerzi, V., Li, M., et al. (2000) Association of mammalian trp4 and phospholipase, C isozymes with a PDZ domain-containing protein, NHERF. J. Biol. Chem. 275, 37,559–37,564.

    CAS  Google Scholar 

  57. Berman, D. M. and Gilman, A. G. (1998) Mammalian RGS proteins: barbarians at the gate. J. Biol. Chem. 273, 1269–1272.

    Article  PubMed  CAS  Google Scholar 

  58. Ross, E. M. and Wilkie, T. M. (2000) GTPase-activating proteins for heterotrimeric G proteis: regulators of G protein signaling (RGS) and RGS-like proteins. Annu. Rev. Biochem. 69, 795–827.

    Article  PubMed  CAS  Google Scholar 

  59. Zeng, W., Xu, X., Popov, S., Mukhopadhyay, S., Chidiac, P., Swistok, J., et al. (1998) The N-terminal domain of RGS4 confers receptor-selective inhibition of G protein signaling. J. Biol. Chem. 273, 34,687–34,690.

    CAS  Google Scholar 

  60. Xu, X., Zeng, W., Popov, S., Berman, D. M., Davignon, I., Yu, K., et al. (1999) RGS proteins determine signaling specificity of Gq-coupled receptors. J. Biol. Chem. 274, 3549–3556.

    Article  PubMed  CAS  Google Scholar 

  61. Heximer, S. P., Lim, H., Bernard, J. L., and Blumer, K.J. (2001) Mechanisms governing subcellular localization and function of human RGS2. J. Biol. Chem. 276, 14,195–14,203.

    CAS  Google Scholar 

  62. Luo, X., Popov, S., Bera, A. K., Wilkie, T. M. and Muallem, S. (2001) RGS proteins provide biochemical control of agonist-evoked [Ca2+]i oscillations. Mol. Cell. 7, 651–660.

    Article  PubMed  CAS  Google Scholar 

  63. Oh, P. and Schnitzer, J. E. (2001) Segregation of heterotrimetric G proteins in cell surface microdomains. Gq binds caveolin to concentrate in caveolae, whereas Gi and Gs target lipid rafts by default. Mol. Biol. Cell. 12, 685–698.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Poronnik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poronnik, P., Cummins, M.M., O'Mullane, L.M. et al. Use of adenoviruses to study isoform specificity of G-protein-receptor-coupled Ca2+ signaling in intact epithelial cells. Cell Biochem Biophys 36, 221–233 (2002). https://doi.org/10.1385/CBB:36:2-3:221

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:36:2-3:221

Index Entries

Navigation