Skip to main content
Log in

Environmental response of yeast peroxisomes

Aspects of organelle assembly and degradation

  • Part I Peroxisome Biogenesis
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Nutritional changes can effect either the assembly or disassembly of yeast peroxisomes. In the past decade, insights regarding the molecular mechanisms of peroxisome assembly have been gained chiefly through the cloning of the PEX genes obtained by complementation of corresponding pex mutants in several yeast strains and Chinese hamster ovary cell lines. Depletion of these peroxins (proteins encoded by PEX genes) by deletion of the corresponding genes affects peroxisomal protein import biogenesis or proliferation. To complement these studies in the field, the authors undertook an investigation of the functions of a subset of Candida boidinii peroxisomal membrane proteins (PMPs), Pex11, Pmp47, and Pmp20, by analyzing strains of C. boidnii in which the genes encoding these proteins were deleted. The authors' studies show that Pex11p is involved in peroxisome proliferation; Pmp47 plays a role in the translocation, folding, or assembly of dihydroxyacetone synthase; and Pmp20 is probably involved in methanol metabolism. In contrast to the studies on peroxisome assembly, the molecular mechanisms of peroxisome degradation remain poorly understood. To shed light on this problem, the authors isolated Pichia pastoris mutants defective in peroxisome autopathy (pag mutants). A novel, double-fluorescence method used for the characterization of wild-type cells and of pag mutants enabled us to dissect the microautophagic degradation of peroxisomes into several distinct stages. These studies show that specific PAG gene products are involved in multiple steps of the process. Future cloning and characterization of the functions of PAG genes will reveal the molecular basis of peroxisome degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gould, S. J., McCollum, D., Spong, A. P., Heyman, J. A., and Subramani, S. (1992) Development of the yeast Pichia pastoris as a model organism for a genetic and molecular analysis of peroxisome assembly. Yeast 8, 613–628.

    Article  CAS  Google Scholar 

  2. Liu, H., Tan, X., Veenhuis, M., McCollum, D., and Cregg, J. M. (1992) An efficient screen for peroxisome-deficient mutants of Pichia pastoris. J. Bacteriol. 174, 4943–4951.

    Article  CAS  Google Scholar 

  3. Borman, C. and Sahm, H. (1978) Degradation of microbodies in relation to activities of alcohol oxidase and catalase in Candida boidinii. Arch. Microbiol. 117, 67–72.

    Article  Google Scholar 

  4. Chiang, H.-L., Schekman, R., and Hamamoto, S. (1996) Selective uptake of cytosolic, peroxisomal, and plasma membrane proteins into the yeast lysosome for degradation. J. Biol. Chem. 271, 9934–9941.

    Article  CAS  Google Scholar 

  5. Veenhuis, M., Douma, A., Harder, W., and Osumi, M. (1983) Degradation and turnover of peroxisomes in the yeast Hansenula polymorpha induced by selective inactivation of peroxisomal enzymes. Arch. Microbiol. 134, 193–203.

    Article  CAS  Google Scholar 

  6. Titorenko, V. I., Keizer, I., Harder, W., and Veenhuis, M. (1995) Isolation and characterization of mutants impaired in the selective degradation of peroxisomes in the yeast Hansenula polymorpha. J. Bacteriol. 177, 357–363.

    Article  CAS  Google Scholar 

  7. Tuttle, D. L., Lewin, A. S., and Dunn, W. A. J. (1993) Selective autophagy of peroxisomes in methylotrophic yeasts. Eur. J. Cell Biol. 60, 283–290.

    CAS  PubMed  Google Scholar 

  8. Tuttle, D. L. and Dunn, W. A. (1995) Divergent modes of autophagy in methylotrophic yeast Pichia pastoris. J. Cell Sci. 108, 25–35.

    CAS  PubMed  Google Scholar 

  9. Goodman, J. M., Trapp, S. B., Hwang, H., and Veenhuis, M. (1990) Peroxisomes induced in Candida boidinii by methanol, oleic acid and d-alanine vary in metabolic function but share common integral membrane proteins. J. Cell Sci. 97, 193–204.

    CAS  PubMed  Google Scholar 

  10. Sakai, Y., Yurimoto, H., Matsuo, H., and Kato, N. (1988) Regulation of peroxisomal proteins and organelle proliferation by multiple carbon sources in the methylotrophic Yeast, Candida boidinii. Yeast 14, 1175–1187.

    Article  Google Scholar 

  11. Goodman, J. M., Maher, J., Silver, P. A., Pacifico, A., and Sanders, D. (1986) The membrane proteins of the methanol-induced peroxisomes of Candida boidinii. J. Biol. Chem. 261, 3464–3468.

    CAS  PubMed  Google Scholar 

  12. McCammon, M. T., Dowds, C. A., Orth, K., Moomaw, C. R., Slaughter, C. A., and Goodman, J. M. (1990) Sorting of peroxisomal membrane protein PMP47 from Candida boidinii into peroxisomal membranes of Saccharomyces cerevisiae. J. Biol. Chem. 265, 20,098–20,105.

    CAS  Google Scholar 

  13. Sakai, Y., Marshall, P. A., Saiganji, A., Takabe, K., Saiki, H., Kato, N., and Goodman, J. M. (1995) Candida boidinii peroxisomal membrane protein PMP30 has role in peroxisomal proliferation and is functionally homologous to Pmp27 from Saccharomyces cerevisiae. J. Bacteriol. 177, 6773–6781.

    Article  CAS  Google Scholar 

  14. Garrard, L. J. and Goodman, J. M. (1989) Two genes encode the major membrane-associated protein of methanol-induced peroxisomes from Candida boidinii. J. Biol. Chem. 264, 13,929–13,937.

    CAS  Google Scholar 

  15. Sakai, Y., Saiganji, A., Yurimoto, H., Takabe, K., Saiki, H., and Kato, N. (1996) The absence of Pmp47, a putative yeast peroxisomal transporter, causes a defect in transport and folding of a specific matrix enzyme. J. Cell Biol. 134, 37–51.

    Article  CAS  Google Scholar 

  16. Sakai, Y., Kazarimoto, T., and Tani, Y. (1991) Transformation system for an asporogenous methylotrophic yeast, Candida boidinii: cloning of orotidine-5′-phosphate decarboxylase gene (URA3), isolation of uracil auxotrophic mutants, and use of mutants for integrative transformation. J. Bacteriol. 173, 7458–7463.

    Article  CAS  Google Scholar 

  17. Sakai, Y. and Tani, Y. (1992) Directed mutagenesis in an asporogenous methylotrophic yeast: cloning, sequencing, and one-step gene disruption of the 3-isopropylmalate dehydrogenase gene (LEU2) of Candida boidinii to derive doubly auxotrophic marker strains. J. Bacteriol. 174, 5988–5993.

    Article  CAS  Google Scholar 

  18. Sakai, Y., Goh, T. K. and Tani, Y. (1993) High-frequency transformation of a methylotropic yeast, Candida boidinii, with autonomously replicating plasmids which are also functional in Saccharomyces cerevisiae. J. Bacteriol. 175, 3556–3562.

    Article  CAS  Google Scholar 

  19. Sakai, Y., Akiyama, M., Kondoh, H., Shibano, Y., and Kato, N. (1996) High-level secretion of fungal glucoamylase using Candida boidinii gene expression system. Biochim. Biophys. Acta 1308, 81–87.

    Article  Google Scholar 

  20. Sulter, G. J., Waterham, H. R., Goodman, J. M., and Veenhuis, M. (1990) Proliferation and metabolic significance of peroxisomes in Candida boidinii during growth on d-alanine or oleic acid as the sole carbon source. Arch. Microbiol. 153, 485–489.

    Article  CAS  Google Scholar 

  21. Erdmann, R. and Blobel, G. (1995) Giant peroxisomes in oleic acid-induced Saccharomyces cerevisiae lacking peroxisomal membrane protein Pmp27p. J. Cell Biol. 128, 509–524.

    Article  CAS  Google Scholar 

  22. Marshall, P. A., Krimkevich, Y. I., Lark, R. H., Dyer, J., Veenhuis, M., and Goodman, J. M. (1995) Pmp27 promotes peroxisomal proliferation. J. Cell Biol. 129, 345–355.

    Article  CAS  Google Scholar 

  23. Moreno, M., Lark, R., Campbell, K. L., and Goodman, J. M. (1994) Peroxisomal membrane proteins of Candida boidinii: Gene isolation and expression. Yeast 10, 1447–1457.

    Article  CAS  Google Scholar 

  24. Passreiter, M., Anton, M., Lay, D., Frank, R., Harter, C., Wieland, F., Gorgas, K., and Just, W. W. (1998) Peroxisome biogenesis: involvement of ARF and coatomer. J. Cell Biol. 141, 373–383.

    Article  CAS  Google Scholar 

  25. Marshall, P. A., Dyer, J. M., Quick, M. E., and Goodman, J. M. (1996) Redox-sensitive homodimerization of Pex11p: a proposed mechanism to regulate peroxisomal division. J. Cell Biol. 135, 123–137.

    Article  CAS  Google Scholar 

  26. Jank, B., Habermann, B., Schweyen, R. J., and Link, T. A. (1993) PMP47, a peroxisomal homologue of mitochondrial solute carrier proteins. Trends Biochem. Sci. 18, 427–428.

    Article  CAS  Google Scholar 

  27. Kuan, J. and Saier, M. H. J. (1993) The mitochondrial carrier family of transport proteins: structural, functinal, and evolutionary relationships. Crit. Rev. Biochem. Mol. Biol. 28, 209–233.

    Article  CAS  Google Scholar 

  28. McCammon, M. T., McNew, J. A., Willy, P. J., and Goodman, J. M. (1994) An internal region of the peroxisomal membrane protein PMP47 is essential for sorting to peroxisomes. J. Cell Biol. 124, 915–925

    Article  CAS  Google Scholar 

  29. Sakai, Y. and Tani, Y. (1992) Cloning and sequencing of the alcohol oxidase-encoding gene (AOD1) from the formaldehyde-producing asporogenous methylotrophic yeast, Candida boidinii S2. Gene 114, 67–73.

    CAS  PubMed  Google Scholar 

  30. Glover, J. R., Andrews, D. W., and Rachubinski, R. A. (1994) Saccharomyces cerevisiae peroxisomal thiolase is imported as a dimer. Proc. Natl. Acad. Sci. USA 91, 10,541–10,545.

    Article  CAS  Google Scholar 

  31. McNew, J. A. and Goodman, J. M. (1994) An oligomeric protein is imported into peroxisomes in vivo. J. Cell Biol. 127, 1245–1258.

    Article  CAS  Google Scholar 

  32. Walton, P. A., Hill, P. E., and Subramani, S. (1995) Import of stably folded proteins into peroxisomes. Mol. Biol. Cell 6, 675–683.

    Article  CAS  Google Scholar 

  33. Waterham, H. R., Russell, K. A., de Vries, Y., and Cregg, J. M. (1997) Peroxisomal targeting, import, and assembly of alcohol oxidase in Pichia pastoris. J. Cell Biol. 139, 1419–1431.

    Article  CAS  Google Scholar 

  34. Wimmer, B., Lottspeich, F., van der Klei, I., Veenhuis, M., and Gietl, C. (1997) The glyoxysomal and plastid molecular chaperones (70-kDa heat shock protein) of watermelon cotyledons are encoded by a single gene. Proc. Natl. Acad. Sci. USA 94, 13,624–13,629.

    Article  CAS  Google Scholar 

  35. Bellion, E. and Goodman, J. M. (1987) Proton ionophores prevent assembly of a peroxisomal protein. Cell 48, 165–173.

    Article  CAS  Google Scholar 

  36. Cyr, D. M., Stuart, R. A., and Neupert, W. (1993) A matrix ATP requirement for presequence translocation across the inner membrane of mitochondria. J. Biol. Chem. 268, 23,751–23,754.

    CAS  Google Scholar 

  37. Imanaka, T., Small, G. M., and Lazarow, P. B. (1987) Translocation of acyl-CoA oxidase into peroxisomes requires ATP hydrolysis but not a membrane potential. J. Cell Biol. 105, 2915–2922.

    Article  CAS  Google Scholar 

  38. Wendland, M. and Subramani, S. (1993) Cytosol-dependent peroxisomal protein import in a permeabilized cell system. J. Cell Biol. 120, 675–685.

    Article  CAS  Google Scholar 

  39. Baba, M., Takeshige, K., Baba, N., and Ohsumi, Y. (1994) Ultrastructural analysis of autophagic process in yeast: detection of autophagosomes and their characterization. J. Cell Biol. 124, 903–913.

    Article  CAS  Google Scholar 

  40. Baba, M., Osumi, M., and Ohsumi, Y. (1995) Analysis of membrane structures involved in autophagy in yeast by freeze-relica method. Cell Struct. Funct. 20, 465–471.

    Article  CAS  Google Scholar 

  41. Tsukada, M. and Ohsumi, Y. (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 333, 169–174.

    Article  CAS  Google Scholar 

  42. Thumm, M., Egner, R., Koch, B., Schlumpberger, M., Straub, M., Veenhuis, M., and Wolf, D. H. (1994) Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett. 349, 275–280.

    Article  CAS  Google Scholar 

  43. Noda, T., Matsuura, A., Wada, Y., and Ohsumi, Y. (1995) Novel system for monitoring autophagy in the yeast Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 210, 126–132.

    Article  CAS  Google Scholar 

  44. Harding, T. M., Morano, K. A., Scott, S. V., and Klionsky, D. J. (1995) Isolation and characterization of yeast mutants in cytoplasm to vacuole protein targeting pathway. J. Cell Biol. 131, 591–602.

    Article  CAS  Google Scholar 

  45. Harding, T. M., Hefner, G. A., Thumm, M., and Klionsky, D. J. (1996) Genetic and phenotypic overlap between autophagy and cytoplasm to vacuole protein targeting pathway. J. Biol. Chem. 271, 17,621–17,624.

    Article  CAS  Google Scholar 

  46. Scott, S. V., Hefner, G. A., Morano, K. A., Noda, T., Ohsumi, Y., and Klionsky, D. J. (1996) Cytoplasm-to-vacuole targeting and autophagy employ the same machinery to deliver proteins to the yeast vacuole. Proc. Natl. Acad. Sci. USA 93, 12,304–12,308.

    Article  CAS  Google Scholar 

  47. Scott, S. V., Baba, M., Ohsumi, Y., and Klionsky, D. J. (1997) Aminopeptidase I is targeted to vacuole by nonclassical vesicular mechanism. J. Cell Biol. 138, 37–44.

    Article  CAS  Google Scholar 

  48. Sakai, Y., Koller, A., Rangell, L. K., Keller, G. A., and Subramani, S. (1998) Peroxisome degradation by microautophagy in Pichia pastoris: Identification of specific steps and morphological intermediates. J. Cell Biol. 141, 625–636.

    Article  CAS  Google Scholar 

  49. Yuan, W., Tuttle, D. L., Shi, Y. L., Ralph, G. S., and Dunn, W. J. (1997) Glucose-induced microautophagy in Pichia pastoris requires the alpha-subunit of phosphofructokinase. J. Cell Sci. 110, 1935–1945.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuyoshi Sakai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakai, Y., Subramani, S. Environmental response of yeast peroxisomes. Cell Biochem Biophys 32, 51–61 (2000). https://doi.org/10.1385/CBB:32:1-3:51

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:32:1-3:51

Index Entries

Navigation