Skip to main content
Log in

Characterization of high-salt and high-fat diets on cardiac and vascular function in mice

  • Original Contributions
  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

This study compared two established dietary formulations, high salt and high fat-high carbohydrate, separately or in combination on the induction cardiovascular dysfunction. One-month-old C57BL/6J mice were fed one of the following diets for 3 mo: (1) control diet consisting of a high fat-high simple carbohydrate (HFHSC); (2) 8% NaCl diet (HS); or (3) HFHSC diet supplemented with 1% NaCl (HFHS). After 3 mo, the HFHSC mice demonstrated significantly increased end-diastolic volume and end-systolic volume, specifically increases of 35% and 78%, respectively (p<0.01) and a reduction of ventricular stiffness by 27% (p=0.015). The HS mice exhibited arterial hypertension with an increase of 33% in maximum end-systolic pressure (p=.024) and a decrease of 44% in arterial elastance (p=0.020), corroborated by an increase in the heart weight to body weight ratios (p=0.002) and vascular types I and III collagen (p=0.03 and p=0.0008, respectively). The HFHS group revealed a striking response of 230% to the α1-adrenergic challenge (p=0.00034). These data suggest that the HFHSC diet causes dilaeed cardiomyopathy, whereas the HS diet produces arterial hypertension and the HFHS diet causes a vascular dysfunctional state that was highly responsive to α-adrenergic stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Levy, D., Larson, M.G., Vasan, R.S., Kannel, W.B., and Ho, K.K. (1996). The progression from hypertension to congestive heart failure. JAMA 275:1557–1562.

    Article  PubMed  CAS  Google Scholar 

  2. Geleijnse, J.M., Kok, F.J., and Grobbee, D.E. (2003). Blood pressure response to changes in sodium and potassium intake: a metaregression analysis of randomised trials. J. Hum. Hypertens. 17:471–480.

    Article  PubMed  CAS  Google Scholar 

  3. Garrett, M.R., Dene, H., Walder, R., Zhang, Q.Y., Cicila, G.T., Assadnia, S., et al. (1998). Genome scan and congenic strains for blood pressure QTL using Dahl salt-sensitive rats. Genome Res. 8:711–723.

    PubMed  CAS  Google Scholar 

  4. Mills, E., Kuhn, C.M., Feinglos, M.N., and Surwit, R. (1993). Hypertension in CB57BL/6J mouse model of non-insulin-dependent diabetes mellitus. Am. J. Physiol. 264: R73-R78.

    PubMed  CAS  Google Scholar 

  5. Gros, R., Van Wert, R., You, X., Thorin, E., and Husain, M. (2002). Effects of age, gender, and blood pressure on myogenic responses of mesenteric arteries from C57BL/6 mice. Am. J. Physiol. Heart Circ. Physiol. 282: H380-H388.

    PubMed  CAS  Google Scholar 

  6. Sugiyama, F., Yagami, K., and Paigen, B. (2001). Mouse models of blood pressure regulation and hypertension. Curr. Hypertens. Rep. 3:41–48.

    Article  PubMed  CAS  Google Scholar 

  7. Carlson, S.H., Oparil, S., Chen, Y.F., and Wyss, J.M. (2002). Blood pressure and NaCl-sensitive hypertension are influenced by angiotensin-converting enzyme gene expression in transgenic mice. Hypertension 39:214–218.

    Article  PubMed  CAS  Google Scholar 

  8. Yang, B., Larson, D.F., and Watson, R.R. (1999). Agerelated left ventricular function in the mouse: analysis based on in vivo pressure-volume relationships. Am. J. Physiol. 277:H1906-H1913.

    PubMed  CAS  Google Scholar 

  9. Yang, B., Larson, D.F., Kelley, R.R., Beischel, J., and Watson, R.R. (2000). Conductivity: an issue for the application of conductance catheter system in mice. Cardiovasc. Eng. 5:57–60.

    Google Scholar 

  10. Yang, B., Larson, D.F., Beischel, J., Kelley, R., Shi, J., and Watson, R.R. (2001). Validation of conductance catheter system for quantification of murine pressure-volume loops. J. Invest. Surg. 14:341–355.

    Article  PubMed  CAS  Google Scholar 

  11. Yu, Q., Montes, S., Larson, D.F., and Watson, R.R. (2002). Effects of chronic methamphetamine exposure on heart function in uninfected and retrovirus-infected mice. Life Sci. 71:953–965.

    Article  PubMed  CAS  Google Scholar 

  12. Dalkara, T., Irikura, K., Huang, Z., Panahian, N., and Moskowitz, M.A. (1995). Cerebrovascular responses under controlled and monitored physiological conditions in the anesthetized mouse. J. Cereb. Blood Flow Metab. 15: 631–638.

    PubMed  CAS  Google Scholar 

  13. Georgakopoulos, D., Mitzner, W.A., Chen, C.H., Byrne, B.J., Millar, H.D., Hare, J.M., et al. (1998). In vivo murine left ventricular pressure-volume relations by miniaturized conductance micromanometry. Am. J. Physiol. 274:H1416-H1422.

    PubMed  CAS  Google Scholar 

  14. Glower, D.D., Spratt, J.A., Snow, N.D., Kabas, J.S., Davis, J.W., Olsen, C.O., et al. (1985). Linearity of the Frank-Starling relationship in the intact heart: the concept of preload recruitable stroke work. Circulation 71:994–1009.

    PubMed  CAS  Google Scholar 

  15. Kass, D.A., Yamazaki, T., Burkhoff, D., Maughan, W.L., and Sagawa, K. (1986). Determination of left ventricular end-systolic pressure-volume relationships by the conductance (volume) catheter technique. Circulation 73: 586–595.

    PubMed  CAS  Google Scholar 

  16. Li, Y.C., Kong, L., Wei, M., Chen, Z.F., Liu, S.Q., and Cao, L.P. (2002). 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J. Clin. Invest. 110:229–238.

    Article  PubMed  CAS  Google Scholar 

  17. Forster, C., Carter, S.L., and Armstrong, P.W. (1989). Alpha 1-adrenoceptor activity in arterial smooth muscle following congestive heart failure. Can. J. Physiol. Pharmacol. 67:110–115.

    PubMed  CAS  Google Scholar 

  18. Creager, M.A., Hirsch, A.T., Dzau, V.J., Nabel, E.G., Cutler, S.S., and Colucci, W.S. (1990). Baroreflex regulation of regional blood flow in congestive heart failure. Am. J. Physiol. 258:H1409-H1414.

    PubMed  CAS  Google Scholar 

  19. White, M., Fourney, A., Mikes, E., and Leenen, F.H. (1999). Effects of age and hypertension on cardiac responses to the alphal-agonist phenylephrine in humans. Am. J. Hypertens. 12:151–158.

    Article  PubMed  CAS  Google Scholar 

  20. Roe, C.R., Sweetman, L., Roe, D.S., David, F., and Brunengraber, H. (2002). Treatment of cardiomyopathy and rhabdomyolysis in long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride. J. Clin. Invest. 110:259–269.

    Article  PubMed  CAS  Google Scholar 

  21. Sanderson, S.L., Gross, K.L., Ogburn, P.N., Calvert, C., Jacobs, G., Lowry, S.R., et al. (2001). Effects of dietary fat and L-carnitine on plasma and whole blood taurine concentrations and cardiac function in healthy dogs fed protein-restricted diets. Am. J. Vet. Res. 62:1616–1623.

    Article  PubMed  CAS  Google Scholar 

  22. Best, T.H., Franz D.N., Gilbert, D.L., Nelson, D.P., and Epstein, M.R. (2000). Cardiac complications in pediatric patients on the ketogenic diet. Neurology 54:2328–2330.

    PubMed  CAS  Google Scholar 

  23. Hackenthal, E., Paul, M., Ganten, D., and Taugner, R. (1990). Morphology, physiology, and molecular biology of renin secretion. Physiol. Rev. 70:1067–1116.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas F. Larson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Q., Larson, D.F., Slayback, D. et al. Characterization of high-salt and high-fat diets on cardiac and vascular function in mice. Cardiovasc Toxicol 4, 37–46 (2004). https://doi.org/10.1385/CT:4:1:37

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/CT:4:1:37

Key Words

Navigation