Skip to main content
Log in

Cell death and diabetic cardiomyopathy

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Myocardial cell death is a key element in the pathogenesis and progression of various etiological cardiomyopathies such as ischemia-reperfusion, toxic exposure, and various chronic diseases including myocardial infarction, atherosclerosis, and endothelial dysfunction. Myocardial cell death is also observed in the hearts of diabetic patients and antimal models; however, its importance in the development of diabetic cardiomyopathy is not completely understood. The goal of this review is to summarize our current understanding of the characteristics of diabetes-induced myocardial cell death. In the search of themechanisms by which diabetes induces myocardial cell death, multiple cell death pathways have been proposed. Reactive oxygen and nitrogen species accumulation plays a critical role in the cell death by antioxidants or inhibitors for apoptosis-specific signaling pathways results in a significant prevention of diabetic cardiotoxicity, suggesting that cell death in diabetic subjects plays an important role in the development of diabetic cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Swynghedauw, B. (1999). Molecular mechanisms of myocardial remodeling. Physiol. Rev. 79:215–262.

    PubMed  CAS  Google Scholar 

  2. Kang, Y.J. (2001). Molecular and cellular mechanisms of cardiotoxicity. Environ. Health Perspect. 109(Suppl 1):27–34.

    Article  PubMed  CAS  Google Scholar 

  3. Teiger, E., Than, V.D., Richard, L., Wisnewsky, C., Tea, B.S., Gaboury, L., Tremblay, J., Schwartz, K. and Hamet, P. (1996). Apoptosis in pressure overload-induced heart hypertrophy in the rat. J. Clin. Invest. 97:2891–2897.

    PubMed  CAS  Google Scholar 

  4. Narula, J., Kolodgie, F.D. and Virmani, R. (2000). Apoptosis and cardiomyopathy. Curr. Opin. Cardiol. 15:183–188.

    Article  PubMed  CAS  Google Scholar 

  5. Nerheim, P., Krishnan, S.C., Olshansky, B. and Shivkumar, K. (2001). Apoptosis in the genesis of cardiac rhythm disorders. Cardiol. Clin. 19:155–163.

    Article  PubMed  CAS  Google Scholar 

  6. Tomei, L.D. and Umansky, S.R. (2001). Apoptosis and the heart: A brief review. Ann. NY Acad. Sci. 946:160–168.

    PubMed  CAS  Google Scholar 

  7. Richardson, P., McKenna, W., Bristow, M., Maisch, B., Mautner, B., O’Connell, J., et al. (1996). Report of the 1995 World health organization/International Society and Federation of Cardiology Task force on the definition and classification of cardiomyopathies. Circulation 93:841–842.

    PubMed  CAS  Google Scholar 

  8. Davies, M.J. (2000). The cardiomyopathies: An overview. Heart 83:469–474.

    Article  PubMed  CAS  Google Scholar 

  9. Francis, G.S. (2001). Editorial. Diabetic cardiomyopathy: Fact or friction? Heart 85:247–248.

    Article  PubMed  CAS  Google Scholar 

  10. Sowers, J.R., Epstein, M., and Frohlich, E.D. (2001). Diabetes, hypertension, and cardiovascular disease: An update. Hypertension 37:1053–1059.

    PubMed  CAS  Google Scholar 

  11. Timmis, A.D. (2001). Diabetic heart disease: Clinical considerations. Heart 85:463–469.

    Article  PubMed  CAS  Google Scholar 

  12. Alici, B., Gumustas, M.K., Ozkara, H., Akkus, E., Demirel, G., Yencilek, F., and Hattat, H. (2000). Apoptosis in the erectile tissues of diabetic and healthy rats. Br. J. Urol. Int. 85:326–329.

    CAS  Google Scholar 

  13. Moley, K.H. (2001). Hyperglycemia and apoptosis: Mechanisms for congenital malformations and pregnancy loss in diabetic woman. Trends Endocr. Metab. 12:78–82.

    Article  CAS  Google Scholar 

  14. Srinivasan, S., Stevens, M., and Wiley, J.W. (2000). Diabetic peripheral neuropathy: evidence for apoptosis and associated mitochondrial dysfunction. Diabetes 49:1932–1938.

    Article  PubMed  CAS  Google Scholar 

  15. Barber, A.J., Lieth, E., Khin, S.A., Antonetti, D.A., Buchanan, A.G., and Gardner, T.W. (1998). Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J. Clin. Invest. 102:783–791.

    PubMed  CAS  Google Scholar 

  16. Kang, B.P., Frencher, S., Reddy, V., Kessler, A., Malhotra, A., and Meggs, L.G. (2003). High glucose promotes mesangial cell apoptosis by an oxidant dependent mechanism. Am. J. Physiol. Renal Physiol. 284:F455-F466.

    PubMed  CAS  Google Scholar 

  17. Li, Z.G., Zhang, W., Grunberger, G., and Sima, A.A. (2002). Hippocampal neuronal apoptosis in type-1 diabetes. Brain Res. 946:221–231.

    Article  PubMed  CAS  Google Scholar 

  18. Russell, J.W., Golovoy, D., Vincent, A.M., Mahendru, P., Olzmann, J.A., Mentzer, A., and Feldman, E.L. (2002). High glucose-induced oxidative stress and mitochondrial dysfunction in neurons. FASEB J. 16:1738–1748.

    Article  PubMed  CAS  Google Scholar 

  19. Sainio-Pollanen, S., Henriksen, K., Parvinen, M., Simell, O., and Pollanen, P. (1997). Stage-specific degeneration of germ cells in the seminiferous tubules of non-obese diabetic mice. Int. J. Androl. 20:243–253.

    Article  PubMed  CAS  Google Scholar 

  20. Cai, L., Chen, S., Evans, T., Deng, D.X., Mukherjee, K., and Chakrabarti, S. (2000). Apoptotic germ-cell death and testicular damage in experimental diabetes: Prevention by endothelin antagonism. Urol. Res. 28:342–347.

    Article  PubMed  CAS  Google Scholar 

  21. Feuerstein, G.Z., and Young, P.R. (2000). Apoptosis in cardiac diseases: Stress- and mitogen-activated signaling pathways. Cardiovasc. Res. 45:560–569.

    Article  PubMed  CAS  Google Scholar 

  22. Cai, L., and Kang, Y.J. (2001). Oxidative stress and diabetic cardiomyopathy: A brief review. Cardiovasc. Toxicol. 1:181–193.

    Article  PubMed  CAS  Google Scholar 

  23. Fiordaliso, F., Li, B., Latini, R., Sonnenblick, E.H., Anversa, P., Leri, A., and Kajstura, J. (2000). Myocyte death in streptozotocin-induced diabetes in rats in angiotensin II-dependent. Lab. Invest. 80:513–527.

    PubMed  CAS  Google Scholar 

  24. Chen, S., Evans, T., Mukherjee, K., Karmazyn, M., and Chakrabarti, S. (2000). Diabetes-induced myocardial structural changes: role of endothelin-1 and its receptors. J. Mol. Cell. Cardiol. 32:1621–1629.

    Article  PubMed  CAS  Google Scholar 

  25. Cai, L., Li, W., Wang, G., Guo, L., Jiang, Y., and Kang, Y.J. (2002). Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes 51:1938–1948.

    Article  PubMed  CAS  Google Scholar 

  26. Kajstura, J., Fiordaliso, F., Andreoli, A.M., Li, B., Chimenti, S., Medow, M.S., et al. (2001). IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress. Diabetes 50: 1414–1424.

    Article  PubMed  CAS  Google Scholar 

  27. Frustaci, A., Kajstura, J., Chimenti, C., Jakoniuk, I., Leri, A., Maseri, A., Nadal-Ginard, B. and Anversa, P. (2000). Myocardial cell death in human diabetes. Circ. Res. 87:1123–1132.

    PubMed  CAS  Google Scholar 

  28. Baumgartner-Parzer, S.M., Wagner, L., Pettermann, M., Grillari, J., Gessl, A., and Waldhausl, W. (1995). High-glucose—triggered apoptosis in cultured endothelial cells. Diabetes 44:1323–1327.

    Article  PubMed  CAS  Google Scholar 

  29. Wu, Q.D., Wang, J.H., Fennessy, F., Redmond, H.P., and Bouchier-Hayes, D. (1999). Taurine prevents high-glucose-induced human vascular endothelial cell apoptosis. Am. J. Physiol. 277:C1229-C1238.

    PubMed  CAS  Google Scholar 

  30. Chi, M.M., Pingsterhaus, J., Carayannopoulos, M., and Moley, K.H. (2000). Decreased glucose transporter expression triggers BAX-dependent apoptosis in the murine blastocyst. J. Biol. Chem. 275:40252–40257.

    Article  PubMed  CAS  Google Scholar 

  31. Ho, F.M., Liu, S.H., Liau, C.S., Huang, P.J., and Lin-Shiau, S.Y. (2000). High glucose-induced apoptosis in human endothelial cells is mediated by sequential activations of c-Jun NH(2)-terminal kinase and caspase-3. Circulation 101:2618–2624.

    PubMed  CAS  Google Scholar 

  32. Peiro, C., Lafuente, N., Matesanz, N., Cercas, E., Llergo, J.L., Vallejo, S., et al. (2001). High glucose induces cell death of cultured human aortic smooth muscle cells through the formation of hydrogen peroxide. Br. J. Pharmacol. 133:967–974.

    Article  PubMed  CAS  Google Scholar 

  33. Zou, M.H., Shi, C., and Cohen, R.A. (2002). High glucose via peroxynitrite causes tyrosine nitration and inactivation of prostacyclin synthase that is associated with thromboxane/prostaglandin H(2) receptor-mediated apoptosis and adhesion molecule expression in cultured human aortic endothelial cells. Diabetes 51:198–203.

    Article  PubMed  CAS  Google Scholar 

  34. Fiordaliso, F., Leri, A., Cesselli, D., Limana, F., Safai, B., Nadal-Ginard, B., et al. (2001). Hyperglycemia activates p53 and p53-regulated genes leading to myocyte cell death. Diabetes 50:2363–2375.

    Article  PubMed  CAS  Google Scholar 

  35. Shizukuda, Y., Reyland, M.E., and Buttrick, P.M. (2002). Protein kinase C-delta modulates apoptosis induced by hyperglycemia in adult ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 282:H1625-H1634.

    PubMed  CAS  Google Scholar 

  36. Zhou, Y.T., Grayburn, P., Karim, A., Shimabukuro, M., Higa, M., Baetens, D., Orci, L., and Unger, R.H. (2000). Lipotoxic heart disease in obese rats: Implications for human obesity. Proc. Natl. Acad. Sci. USA 97:1784–1789.

    Article  PubMed  CAS  Google Scholar 

  37. Chiu, H.C., Kovacs, A., Ford, D.A., Hsu, F.F., Garcia, R., Herrero, P., Saffitz, J.E., and Schaffer, J.E. (2001). A novel mouse model of lipotoxic cardiomyopathy. J. Clin. Invest. 107:813–822.

    PubMed  CAS  Google Scholar 

  38. Unger, R.H., and Orci, L. (2001). Diseases of liporegulation: New perspective on obesity and related disorders. FASEB J. 15:312–321.

    Article  PubMed  CAS  Google Scholar 

  39. Finck, B.N., Lehman, J.J., Leone, T.C., Welch, M.J., Bennett, M.J., Kovacs, A., et al. (2002). The cardiac phenotype induced by PPARa overexpression mimics that caused by diabetes mellitus. J. Clin. Invest. 109:121–130.

    Article  PubMed  CAS  Google Scholar 

  40. Pulkki, K.J. (1997) Cytokines and cardiomyocyte death. Ann. Med. 29:339–343.

    PubMed  CAS  Google Scholar 

  41. Ginsberg, H.N., and Tuck, C. (2001). Diabetes and dyslipidemia. In: Johnstone, M.J. and Veves, A. (eds). Diabetes and Cardiovascular Disease. Totowa, NJ: Humana Press, pp 131–147.

    Chapter  Google Scholar 

  42. Lopaschuk, G.D. (1996). Fatty acid metabolism in the heart following diabetes. In: Chatham, J.C., Forder, J.R., and McNeill, J.H. (eds). The Heart in Diabetes. Norwell, MA: Kluwer Academic, pp. 215–251.

    Google Scholar 

  43. Rosen, P., Nawroth, P.P., King, G., Moller, W., Tritschler, H.J., and Packer, L. (2001). The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab. Res. Rev. 17:189–212.

    Article  PubMed  CAS  Google Scholar 

  44. Murthy, V.K. and Shipp, J.C. (1997). Accumulation of myocardial triglycerides ketotic diabetes; evidence for increased biosynthesis. Diabetes 26:222–229.

    Article  Google Scholar 

  45. Paulson, D.J. and Crass, M.F. III. (1982). Endogenous triacylglycerol metabolism in diabetic heart. Am. J. Physiol. 242:H1084-H1094.

    PubMed  CAS  Google Scholar 

  46. Chattopadhyay, J., Thompson, E.W., and Schmid, H.H. (1990). Elevated levels of nonesterified fatty acids in the myocardium of alloxan diabetic rats. Lipids 25:307–310.

    Article  PubMed  CAS  Google Scholar 

  47. Avogaro, A., Nosadini, R., Doria, A., Fioretto, P., Velussi, M., Vigorito, C., et al. (1990). Myocardial metabolism in insulin-deficient diabetic humans without coronary artery disease. Am. J. Physiol. 258:E606-E618.

    PubMed  CAS  Google Scholar 

  48. Sparagna, G.C., Hickson-Bick, D.L., Buja, L.M., and McMillin, J.B. (2000). A metabolic role for mitochondria in palmitate-induced cardiac myocyte apoptosis. Am. J. Physiol. Heart Circ. Physiol. 279:H2124-H2132.

    PubMed  CAS  Google Scholar 

  49. Hickson-Bick, D.L., Buja, M.L., and McMillin, J.B. (2000). Palmitate-mediated alterations in the fatty acid metabolism of rat neonatal cardiac myocytes. J. Mol. Cell. Cardiol. 32: 511–519.

    Article  PubMed  CAS  Google Scholar 

  50. Kong, J.Y., and Rabkin, S.W. (2000). Palmitate-induced apoptosis in cardiomyocytes is mediated through alterations in mitochondria: Prevention by cyclosporin A. Biochim. Biophys. Acta 1485:45–55.

    PubMed  CAS  Google Scholar 

  51. Listenberger, L.L., Ory, D.S., and Schaffer, J.E. (2001). Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J. Biol. Chem. 276:14890–14895.

    Article  PubMed  CAS  Google Scholar 

  52. Hickson-Bick, D.L., Sparagna, G.C., Buja, L.M., McMillin, J.B. (2002). Palmitate-induced apoptosis in neonatal cardiomyocytes is not dependent on the generation of ROS. Am. J. Physiol. Heart Circ. Physiol. 282:H656-H664.

    PubMed  CAS  Google Scholar 

  53. Esposito, K., Nappo, F., Marfella, R., Giugliano, G., Giugliano, F., Ciotola, M., et al. (2002). Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: Role of oxidative stress. Circulation 106:2067–2072.

    Article  PubMed  CAS  Google Scholar 

  54. Meldrum, D.R. (1998). Tumor necrosis factor in the heart. Am. J. Physiol. 274:R577-R595.

    PubMed  CAS  Google Scholar 

  55. Sack, M.N. (2002). Tumor necrosis factor-alpha in cardiovascular biology and the potential role for anti-tumor necrosis factor-alpha therapy in heart disease. Pharmacol. Ther. 94:123–135.

    Article  PubMed  CAS  Google Scholar 

  56. Grimble, R.F. (2002). Inflammatory status and insulin resistance. Curr. Opin. Clin. Nutr. Metab. Care 5:551–559.

    Article  PubMed  CAS  Google Scholar 

  57. Giroir, B.P., Johnson, J.H., Brown, T., Allen, G.L., and Beutler, B. (1992). The tissue distribution of tumor necrosis factor biosynthesis during endotoxemia. J. Clin. Invest. 90:693–698.

    PubMed  CAS  Google Scholar 

  58. Depre, C., Young, M.E., Ying, J., Ahuja, H.S., Han, Q., Garza, N., et al. (2000). Streptozotocin-induced changes in cardiac gene expression in the absence of severe contractile dysfunction. J. Mol. Cell. Cardiol. 32:985–996.

    Article  PubMed  CAS  Google Scholar 

  59. Bryant, D., Becker, L., Richardson, J., Shelton, J., Franco, F., Peshock, R., et al. (1998). Cardiac failure in transgenic mice with myocardial expression of tumor necrosis factor-alpha. Circulation 97:1375–1381.

    PubMed  CAS  Google Scholar 

  60. Song, W., Lu, X., and Feng, Q. (2000). Tumor necrosis factor-alpha induces apoptosis via inducible nitric oxide synthase in neonatal mouse cardiomyocytes. Cardiovasc. Res. 45:595–602.

    Article  PubMed  CAS  Google Scholar 

  61. Klein, J.B., Wang, G., Zhou, Z., Burdi, A., and Kang, Y.J. (2002). Inhibition of tumor necrosis factor-a-dependent cardiomyocyte apoptosis by metallothionein. Cardiovasc. Toxicol. 2:209–217.

    PubMed  CAS  Google Scholar 

  62. Scarabelli, T.M., Stephanou, A., Pasini, E., Comini, L., Raddino, R., Knight, R.A., and Latchman, D.S. (2002). Different signaling pathways induce apoptosis in endothelial cells and cardiac myocytes during ischemia/reperfusion injury. Circ. Res. 90:745–748.

    Article  PubMed  CAS  Google Scholar 

  63. Nakagami, H., Morishita, R., Yamamoto, K., Yoshimura, S.I., Taniyama, Y., Aoki, M., et al. (2001). Phosphorylation of p38 mitogen-activated protein kinase downstream of bax-caspase-3 pathway leads to cell death induced by high D-glucose in human endothelial cells. Diabetes 50:1472–1481.

    Article  PubMed  CAS  Google Scholar 

  64. Rajagopalan, S., Kurz, S., Munzel, T., Tarpey, M., Freeman, B.A., Griendling, K.K., and Harrison, D.G. (1996). Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J. Clin. Invest. 97:1916–1923.

    PubMed  CAS  Google Scholar 

  65. Berry, C., Hamilton, C.A., Brosnan, M.J., Magill, F.G., Berg, G.A., McMurray, J.J., et al. (2000). Investigation into the sources of superoxide in human blood vessels: angiotensin II increases superoxide production in human internal mammary arteries. Circulation 101:2206–2212.

    PubMed  CAS  Google Scholar 

  66. Monkemann, H., De Vriese, A.S., Blom, H.J., Kluijtmans, L.A., Heil, S.G., Schild, H.H., et al. (2002). Early molecular events in the development of the diabetic cardiomyopathy. Amino Acids 23:331–336.

    Article  PubMed  CAS  Google Scholar 

  67. Listenberger, L.L., and Schaffer, J.E. (2002). Mechanisms of lipoapoptosis: Implications for human heart disease. Trends Cardiovasc. Med. 12:134–138.

    Article  PubMed  CAS  Google Scholar 

  68. Ohuwa, T., Sato, Y., and Naoi, M. (1995). Hydroxyl radical formation in diabetic rats induced by streptozotocin. Life Sci. 56:1789–1798.

    Article  Google Scholar 

  69. Pennathur, S., Wagner, J.D., Leeuwenbergh, C., Litwak, K.N., and Heinecke, J.W. (2001). A hydroxyl radical-like species oxidizes cynomolgus monkey artery wall proteins in early diabetic vascular disease. J. Clin. Invest. 107: 853–860.

    PubMed  CAS  Google Scholar 

  70. Cai, L., Sun, X., Li, Y., Wang, L., and Kang, Y.J. (2003). Inhibition of peroxynitrite-induced damage is involved in metallothionein prevention of diabetic cardiotoxicity. Toxicol. Sci. 72(Suppl. 1):36.

    Google Scholar 

  71. Desco, M.C., Asensi, M., Marquez, R., Martinez-Valls, J., Vento, M., Pallardo, F.V., et al. (2002). Xanthine oxidase is involved in free radical production in type 1 diabetes: Protection by allopurinol. Diabetes 51:1118–1124.

    Article  PubMed  CAS  Google Scholar 

  72. Nishikawa, T., Edelstein, D., Du, X.L., Yamagishi, S., Matsumura, T., Kaneda, Y., et al. (2000). Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790.

    Article  PubMed  CAS  Google Scholar 

  73. Tanaka, Y., Konno, N., and Kako, K.J. (1992). Mitochondrial dysfunction observed in situ in cardiomyocytes of rats in experimental diabetes. Cardiovasc. Res. 26:409–414.

    Article  PubMed  CAS  Google Scholar 

  74. Flarsheim, C.E., Grupp, I.L., and Matlib, M.A. (1996). Mitochondrial dysfunction accompanies diastolic dysfunction in diabetic rat heart. Am. J. Physiol. 271:H192-H202.

    PubMed  CAS  Google Scholar 

  75. Aikawa, R., Nitta-Komatsubara, Y., Kudoh, S., Takano, H., Nagai, T., Yazaki, Y., et al. (2002). Reactive oxygen species induce cardiomyocyte apoptosis partly through TNF-alpha. Cytokine 18:179–183.

    Article  PubMed  CAS  Google Scholar 

  76. Bajt, M.L., Ho, Y.S., Vonderfecht, S.L., and Jaeschke, H. (2002). Reactive oxygen as modulator of TNF and fas receptor-mediated apoptosis in vivo: Studies with glutathione peroxidase-deficient mice. Antioxid. Redox Signal 4:733–740.

    Article  PubMed  CAS  Google Scholar 

  77. Higuchi, Y., Otsu, K., Nishida, K., Hirotani, S., Nakayama, H., Yamaguchi, O., et al. (2002). Involvement of reactive oxygen species-mediated NF-kappa B activation in TNF-alpha-induced cardiomyocyte hypertrophy. J. Mol. Cell. Cardiol. 34:233–240.

    Article  PubMed  CAS  Google Scholar 

  78. Machida, Y., Kubota, T., Kawamura, N., Funakoshi, H., Ide, T., Utsumi, H., et al. (2003). Overexpression of tumor necrosis factor-α increases production of hydroxyl radical in murine myocardium. Am. J. Physiol. Heart Circ. Physiol. 284:H449-H455.

    PubMed  CAS  Google Scholar 

  79. Kulisz, A., Chen, N., Chandel, N.S., Shao, Z., and Schumacker, P.T. (2002). Mitochondrial ROS initiate phosphor-ylation of p38 MAP kinase during hypoxia in cardiomyocytes. Am. J. Physiol. Lung Cell. Mol. Physiol. 282: L1324-L1329.

    PubMed  CAS  Google Scholar 

  80. Pacher, P., Liaudet, L., Soriano, F.G., Mabley, J.G., Szabo, E., and Szabo, C. (2002). The role of poly(ADP-ribose) polymerase activation in the development of myocardial and endothelial dysfunction in diabetes. Diabetes 51:514–521.

    Article  PubMed  CAS  Google Scholar 

  81. Kajstura, J., Cheng, W., Reiss, K., Clark, W.A., Sonnenblick, E.H., Krajewski, S., et al. (1996). Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab. Invest. 74:86–107.

    PubMed  CAS  Google Scholar 

  82. Cai, L. and Kang, Y.J. (2001). Metallothionein prevents diabetic cardiomyopathy. Toxicol. Sci. 60(Suppl. 1):13.

    Google Scholar 

  83. Cai, L., Li, W., Sun X., Li, Y., and Kang, Y.J. (2002). Prevention of diabetic cardiomyopathy by metallothionein through suppression of hyperglycemia-induced oxidative stress and cell death. Toxicol. Sci. 66(Suppl. 1):288.

    Google Scholar 

  84. Kang, Y.J. (1999). The antioxidant function of metallothionein in the heart. Proc. Soc. Exp. Biol. Med. 222: 263–273.

    Article  PubMed  CAS  Google Scholar 

  85. Cai, L., Klein, J.B., and Kang, Y.J. (2000). Metallothionein inhibits peroxynitrite-induced DNA and lipoprotein damage. J. Biol. Chem. 275:38957–38960.

    Article  PubMed  CAS  Google Scholar 

  86. Dai, S. and McNeill, J.H. (1995). Ascorbic acid supplementation prevents hyperlipidemia and improves myocardial performance in streptozotocin-diabetic rats. Diabetes Res. Clin. Pract. 27:11–18.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, L., Kang, Y.J. Cell death and diabetic cardiomyopathy. Cardiovasc Toxicol 3, 219–228 (2003). https://doi.org/10.1385/CT:3:3:219

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/CT:3:3:219

Key words

Navigation