Skip to main content
Log in

Cardiac pathologic effects of azidothymidine (AZT) in Mg-deficient mice

  • Original Contributions
  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Treatment of HIV with AZT (zidovudine) may have toxic side effects as a result of multiple mechanisms. It is known that patients with AIDS may suffer from magnesium deficiency (MgD). We studied selected biochemical and histopathologic consequences of AZT administration (0.7 mg/mL in drinking water) with concurrent Mg-deficient (20% of normal) diet in male C57BI/6N mice for 3 wk. Significant decreases in red blood cell glutathione (GSH) were evident in the Mg-deficient mice with or without AZT treatment, suggesting compromised antioxidant capacity in the blood. Although MgD alone led to a 1.9-fold increase in plasma thromboxane B2 (TXB2, derived from the highly vasoconstrictive TXA2), AZT+MgD increased the TXB2 level 3.5-fold. AZT (±MgD) provoked prominent hepatic damage expressed by distortion of lobular architecture, nuclear and cellular swelling, and inflammatory lesions and loss of hepatocytes. AZT alone caused mild cardiac lesions, resulting in partial cardiac fibrosis, especially in the atrium. AZT+MgD caused only scattered small-size cardiac lesions consisting of microscopic foci of inflammatory infiltrates in the ventricles but led to more prominent lesions, fibrosis, and scars in the atrium. MgD or AZT alone caused varying degrees of skeletal muscle degeneration; in combination, more intense degeneration and regeneration of muscle cells were evident. In conclusion, it is suggested that both the decreased blood GSH and elevated plasma TXA2 might contribute, at least in part, to the aggravated pathological damages observed in the atrium and skeletal muscle of the AZT-treated Mg-deficient mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lewis, W., Copeland, W.C., and Day, B.J. (2001). Mitochondrial DNA depletion, oxidative stress, and mutation: mechanisms of dysfunction from NRTIs. Lab. Invest. 81: 777–790.

    PubMed  CAS  Google Scholar 

  2. Pezeshkpour, G., Illa, I., and Dalakas, M.C. (1991). Ultrastructural characteristics and DNA immunocytochemistry in HIV and zidovudine-associated myopathies. Hum. Pathol. 22:1281–1288.

    Article  PubMed  CAS  Google Scholar 

  3. Koduri, P.R. and Parekh, S. (2003). Zidovudine-related anemia with reticulocytosis. Ann. Hematol. 82:184–185.

    PubMed  CAS  Google Scholar 

  4. Koch, R.O., Graziadei, W., and Zangerle, R. (2003). Acute hepatic failure and lactate acidosis associated with antiretroviral treatment for HIV. Wien. Klin. Wochenschr. 115: 135–140.

    Article  PubMed  CAS  Google Scholar 

  5. Olano, J.P., Borucki, M.J., Wen, J.W., and Haque, A.K. (1995). Massive hepatic steatosis and lactic acidosis in a patient with AIDS who was receiving zidovudine. Clin. Infect. Dis. 21:973–976.

    PubMed  CAS  Google Scholar 

  6. Brod-Miller, C. (1990). Hypomagnesemia (HMg) in acquired immune deficiency syndrome (AIDS). J. Am. Soc. Nephrol. 1:329–331.

    Google Scholar 

  7. Patrick, L. (2000). Nutrients and HIV: part two—vitamins A and E, zinc, B-vitamins, and magnesium. Altern. Med. Rev. 5:39–51.

    PubMed  CAS  Google Scholar 

  8. Lacey, R.F. and Shaper, A.G. (1984). Changes in water hardness and cardiovascular death rates. Int. J. Epidemiol. 13:18–24.

    Article  PubMed  CAS  Google Scholar 

  9. Ledingham, J.G. and Raine, A.E. (1996). The treatment of heart failure: diuretics, in Oxford Textbook of Medicine, 3rd ed. (Weatherall, D.J., Ledingham, J.G., and Warrell, D.A., eds.) Oxford University Press, New York, pp 2238–2241.

    Google Scholar 

  10. Shils, M.E. (1996). Magnesium, in Present Knowledge in Nutrition, 7th ed. (Ziegler, E.E. and Filer, L.J. Jr., eds.), ILSI Press, Washington, DC, pp 256–264.

    Google Scholar 

  11. Mak, I.T., Komarov, A.M., Wagner, T.L., Stafford, R.E., and Weglicki, W.B. (1996). Enhanced NO production during Mg-deficiency and its role in mediating red blood cell glutathione loss. Am. J. Physiology 271:C385-C390.

    CAS  Google Scholar 

  12. Vormann, J., Gunther, T., Hollriegl, V., and Schumann, K. (1998). Pathobiochemical effects of graded Mg-deficiency in rats. Z. Ernahrungswiss. 37(Suppl 1):92–97.

    PubMed  CAS  Google Scholar 

  13. De la Asuncion, J.G., del Olmo, M.L., Sastre, J., Pallardo, F.V., and Vina, J. (1999). Zidovudine (AZT) causes anoxidation of mitochondrial DNA in mouse liver. Hepatology 29:985–987.

    Article  PubMed  Google Scholar 

  14. Weglicki, W.B., Mak, I.T., Kramer, J.H., Dickens, B.F., Cassidy, M.M., Stafford, R.E., et al. (1996). Role of free radicals and substance P in Mg-deficiency. Cardiovasc. Res. 31:677–682.

    Article  PubMed  CAS  Google Scholar 

  15. Freedman, A.M., Mak, I.T., Stafford, R.E., Dickens, B.F., Cassidy, M.M., Muesing, R.A., et al. (1992). Erythrocytes from MgD hamsters display an enhanced susceptibility to oxidative stress. Am. J. Physiol. 262:C1371-C1375.

    PubMed  CAS  Google Scholar 

  16. Mak, I.T., Stafford, R.E., and Weglicki, W.B. (1992). Loss of RBC glutathione during Mg-deficiency: prevention by vitamin E,D-propranolol and chloroquine. Am. J. Physiol. 267:C1366-C1370.

    Google Scholar 

  17. Belton, O., Byrne, D., Kearney, D., Leahy, A., and Fitzgerald, D.J. (2000). Cyclooxygenase-1 and 2-dependent prostanoid formation in patients with atherosclerosis. Circulation 102:840–845.

    PubMed  CAS  Google Scholar 

  18. Ruga, E., Bova, S., Nussdorfer, G., Mazzocchi, G., Rebuffar, P., Milanesi, O., et al. (2003). Zidovudine-induced alterations in the heart and vascular smooth muscle of the rat. Cardiovasc. Res. 60:147–155.

    Article  PubMed  CAS  Google Scholar 

  19. Laurant, P., Hayoz, D., Brunner, H.R., and Berthelot, A. (1999). Effect of Mg deficiency on blood pressure and mechanical properties of rat carotid artery. Hypertension 33:1105–1110.

    PubMed  CAS  Google Scholar 

  20. Masini, A., Scotti, C., Calligaro, A., Cazzalini, O., Stivala, L.A., Bianchi, L., et al. (1999). Zidovudine-induced experimental myopathy: dual mechanism of mitochondrial damage. J. Neurol. Sci. 166:131–140.

    Article  PubMed  CAS  Google Scholar 

  21. Jurjus, A.R., Walsh, R.J., Weglicki, W.B., and Correa-de-Araujo, R. (1998). Increase in the expression of substance P receptors in the atria of Mg-deficient rats. Cardiovasc. Pathol. 2:199–206.

    Google Scholar 

  22. Morse, D.E., Davis, H.D., Popke, E.J., Brown, K.J., O'Donoghue, V.A., and Grunberg, N.E. (1997). Effects of ddC, AZT on locomotion and acoustic startle. I. Acute effects in female rats. Pharmacol. Biochem. Behav. 56: 221–228.

    Article  PubMed  CAS  Google Scholar 

  23. Dalakas, M.C. (2001). Peripheral neuropathy and antiretroviral drugs. J. Peripher. Nerv. Syst. 6:14–20.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian C. Haudenschild.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mak, I.T., Goldfarb, M.G., Weglicki, W.B. et al. Cardiac pathologic effects of azidothymidine (AZT) in Mg-deficient mice. Cardiovasc Toxicol 4, 169–177 (2004). https://doi.org/10.1385/CT:4:2:169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/CT:4:2:169

Key Words

Navigation