Skip to main content
Log in

Cocaine, not morphine, causes the generation of reactive oxygen species and activation of NF-κB in transiently cotransfected heart cells

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

This study was designed to determine levels of NF-κB reporter gene activity and free radical generation in cultured striated myocytes (H9C2 cells) exposed to cocaine or morphine in the presence of free radical scavengers. Cells were transiently transfected with a NF-κB reporter gene and changes in luciferase activity were detected, by bioluminescence. Using confocal microscopy and 2′,7′-dichlorofluorescin diacetate, cocaine-induced or morphine-induced free radicals were quantified in H9C2 cells. Cocaine and morphine (0–1×10−2 M) were tested separately. Cocaine but not morphine significantly activated Nf-κB reporter gene, activity in H9C2 cells. Overexpression of IκB inhibited NF-κB reporter activity at low (1×10−4 M) but not high (1×10−2 M) cocaine concentrations. Free radicals were generated in H9C2 cells stimulated with cocaine but not with morphine. The production of free radicals and NF-κB reporter gene activity could be blocked with N-acetylcysteine, glutathione, and to a lesser extent, lipoic acid. The results suggest that cocaine induces free radical production, which leads to the activation of NF-κB signal transduction and possible inflammatory responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jaspers, I., Chen, L. C., and Flescher, E. (1998). Induction of interleukin-8 by ozone is mediated by tyrosine kinase and protein kinase A, but not by protein kinase C. J. Cell. Physiol. 177:313–323.

    Article  PubMed  CAS  Google Scholar 

  2. Ogata, N., Yamamoto, H., Kugiyama, K., Yasue, H., and Miyamoto, E. (2000). Involvement of protein kinase C in superoxide anion-induced activation of nuclear factor-kappa B in human endothelial cells. Cardiovasc. Res. 45:513–521.

    Article  PubMed  CAS  Google Scholar 

  3. Sen, R. and Baltimore, D. (1986). Multiple nuclear, factors interact with the immunoglobulin enhancer sequences. Cell 46:705–716.

    Article  PubMed  CAS  Google Scholar 

  4. Kaltschmidt, C., Kaltschmidt, B., Neumann, H., Wekerle, H., and Baeuerle, P.A. (1994). Constitutive NF-kappa B activity in neurons. Mol. Cell. Biol. 14:3981–3992.

    PubMed  CAS  Google Scholar 

  5. Lawrence, R., Chang, L.J., Siebenlist, U., Bressler, P., and Sonenshein, G.E. (1994). Vascular smooth muscle cells express a constitutive NF-kappa B-like activity. J. Biol. Chem. 269:28913–28918.

    PubMed  CAS  Google Scholar 

  6. Grimm, S. and Baeuerle, P.A. (1993). The inducible transcription factor NF-κB: Structure-function relationship of its protein subunits. J. Biochem. 290:297–308.

    CAS  Google Scholar 

  7. Baeuerle, P.A. and Baltimore, D. (1988). I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science 242:540–546.

    Article  PubMed  CAS  Google Scholar 

  8. Baeuerle, P.A. and Baltimore, D. (1988). Activation of DNA-binding activity in an apparently cytoplasmic precursor of the NF-B transcription factor. Cell 53:211–217.

    Article  PubMed  CAS  Google Scholar 

  9. Henkel, T., Machleidt, T., Alkalay, I., Kronke, M., Ben-Neriah, Y., and Baeuerle, P.A. (1993). Rapid proteolysis of I kappa B-alpha is necessary for activation of transcription factor NF-kappa B. Nature 365:182–185.

    Article  PubMed  CAS  Google Scholar 

  10. Palombella, V.J., Rando, O.J., Goldberg, A.L., and Maniatis, T. (1994). The ubiquitin-proteasome pathway is required for processing the NF-ekaoppa B1 precursor protein and the activation of NF-kappa B. Cell 78:773–785.

    Article  PubMed  CAS  Google Scholar 

  11. Traenckner, E.B., Pahl, H.L., Henkel, T., Schmidt, K.N., Wilk, S., and Baeuerle, P.A. (1995). Phosphorylation of human I kappa B-alpha on serines 32 and 36 controls I kappa B-alpha proteolysis and NF-kappa B activation in response to diverse stimuli. J. EMBO 14:2876–2883.

    CAS  Google Scholar 

  12. Thompson, J.E., Phillips, R.J., Erdjument-Bromage, H., Tempst, P., and Ghosh, S. (1995). I kappa B-beta regulates the persistent response in a biphasoc activation of NF-kappa B. Cell 80:573–582.

    Article  PubMed  CAS  Google Scholar 

  13. Grilli, M., Chiu, J.J., and Lenardo, M.J. (1993). NF-kappa B and Rel: participants in a multiform transcriptional regulatory system. Int. Rev. Cytol. 143:1–62.

    PubMed  CAS  Google Scholar 

  14. Siebenlist, U., Franzoso, G., and Brown, K. (1994). Structure, regulation and function of NF-kappa B. Annu. Rev. Cell. Biol. 10:405–455.

    Article  PubMed  CAS  Google Scholar 

  15. Baeuerle, P.A. and Baltimore, D. (1996). NF-kappa B: ten years after. Cell 87:13–20.

    Article  PubMed  CAS  Google Scholar 

  16. Landry, D.B., Couper, L.L., Bryant, S.R., and Lindner., V. (1997). Activation of the NF-kappa B and I kappa B system in smooth muscle cells after rat arterial injury. Induction of vascular cel adhesion molecule-1 and, monocyte chemoattractant protein-1. Am. J. Pathol. 151:1085–1095.

    PubMed  CAS  Google Scholar 

  17. Brach, M.A., Hass, R., Sherman, M.L., Gunji, H., Weichselbaum, R., and Kufe, D. (1991). Ionizing radiation induces expression and binding activity of the nuclear factor kappa B. J. Clin. Invest. 88:691–695.

    Article  PubMed  CAS  Google Scholar 

  18. Schreck, R., Rieber, P., and Baeuerle, P.A. (1991). Reactive oxygen intermediates as a pparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. J EMBO 10:2247–2258.

    CAS  Google Scholar 

  19. Peng, M., Huang, L., Xie, Z.J., Huang, W.H., and Askari, A. (1995). Oxidant-induced activations of nuclear factor-kappa B and activator protein-1 in cardiac myocytes. Cell. Mol. Biol. Res. 41:189–197.

    PubMed  CAS  Google Scholar 

  20. Hattori, Y., Akimoto, K., Murakami, Y., and Kasai K. (1997). Pyrrolidine dithio carbamate inhibits cytokine-induced VCAM-1 gene expression in rat cardiac myocytes. Mol. Cell. Biochem. 177:177–181.

    Article  PubMed  CAS  Google Scholar 

  21. Kacimi, R., Karliner, J.S., Koudssi, F., and Long, C.S. (1998). Expression and regulation of adhesion molecules in cardiac cells by cytokines: response to acute hypoxia. Circ. Res. 82:576–586.

    PubMed  CAS  Google Scholar 

  22. Li, C., Browder, W. and Kao, R.L. (1999). Early activation of transcription factor NF-kappa B during ischemia in perfused rat heart. Am. J. Physiol. 276:H543-H552.

    PubMed  CAS  Google Scholar 

  23. Chandrasekar, B., Smith, J.B., and Freeman, G.L. (2001). Ischemia-reperfusion of rat myocardium activates nuclear factor-KappaB and induces neutrophil infiltration via lipopolysaccharide-induced CXC chemokine. Circulation 103: 2296–2302.

    PubMed  CAS  Google Scholar 

  24. Altavilla, D., Deodato, B., Campo, G.M., Arlotta, M., Miano, M., Squadrito, G., et al. (2000). IRFI 042, a novel dual vitamin E-like antioxidant, inhibits activation of nuclear factor-kappaB and reduces the inflammatory response in myocardial ischemia-reperfusion injury. Cardiovasc. Res. 47:515–528.

    Article  PubMed  CAS  Google Scholar 

  25. Wong, S.C., Fukuchi, M., Melnyk, P., Rodger, I., and Giaid, A. (1998). Induction of cyclooxygenase-2 and activation of nuclear factor-kappaB in myocardium of patients with congestive heart failure. Circulation 98:100–103.

    PubMed  CAS  Google Scholar 

  26. Hargrave, B.Y. and Lattanzio, F. (2002). Cocaine activates renin angiotensin system in pregnant rabbits and alters the response to ischemia. Cardiovasc. Toxicol. 2:91–97.

    Article  PubMed  CAS  Google Scholar 

  27. Yeh, S.Y., Gorodetzky, C.W., and Krebs, H.A. (1977). Isolation and identification of morphine 3- and 6-glucuronides, morphine 3,6-diglucuronide, morphine 3 ethereal sulfate, normorphine and normorphine 6-glucuronide as morphine metabolites in humans. J. Pharmacol. Sci. 66:1288–1293.

    Article  CAS  Google Scholar 

  28. Oliveira, M.T., Rego, A.C., Morgadinho, M.T. Macedo, T.R., and Oliveira, C.R. (2002). Toxic effects of opioid and stimulant drugs on undifferentiated PC12 cells. Ann. N.Y. Acad. Sci. 965:487–496.

    Article  PubMed  CAS  Google Scholar 

  29. Yu, R.C.T., Lee, T.C., Wang, T.C., and Li, J.H. (1999). Genetic toxicity of cocaine. Carcinogenesis 20:1193–1199.

    Article  PubMed  CAS  Google Scholar 

  30. Cohen, M.V., Yang, X.M., Liu, G.S., Heusch, G., and Downey, J.M. (2001). Acetylcholine, bradykinin, opioids and phenylephrine, but not adenosine, trigger preconditioning by generating free radicals and opening mitochondrial Katp channels. Circ. Res. 89:273–278.

    PubMed  CAS  Google Scholar 

  31. McPherson, B.C. and Yao, Z. (2001). Signal transduction of opioid-induced cardioprotection in ischemia-perfusion. Anesthesiology 94:1082–1088.

    Article  PubMed  CAS  Google Scholar 

  32. Fantel, A. and Person, R.E. (2002). Involvement of mitochondria and other free radical sources in normal and abnormal fetal development. Ann. N. Y. Acad. Sci. 959:424–433.

    Article  PubMed  CAS  Google Scholar 

  33. Castelli, M.C., Venturini, L., and Sparber, S.B. (2001). Cocaine and salicylate; documentation of hydroxyl radical formation in hearts and brains of 18-day-old chick embryos and unexpected interactive toxicity. Psychopharmacology 156:23–31.

    Article  PubMed  CAS  Google Scholar 

  34. Yang, Y., Xiao, H., Ke, Q., Cai, J., Xiao, Y.F., and Morgan, J.P. (2002). Enhancement of nitric oxide production by methylergonovine in cultured neonatal rat cardiomyocytes. Br. J. Pharmacol. 135:188–196.

    Article  PubMed  CAS  Google Scholar 

  35. Regnier, C.H., Song, H.Y., Gao, X., Goeddel, D.V., Cao, Z., and Rothe, M. (1997). Identification and characterization of an IkappaB kinase. Cell. 90:373–383.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hargrave, B.Y., Tiangco, D.A., Lattanzio, F.A. et al. Cocaine, not morphine, causes the generation of reactive oxygen species and activation of NF-κB in transiently cotransfected heart cells. Cardiovasc Toxicol 3, 141–151 (2003). https://doi.org/10.1385/CT:3:2:141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/CT:3:2:141

Key words

Navigation