Skip to main content
Log in

Chronotropic response of cultured neonatal rat ventricular myocytes to short-term fluid shear

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Ventricular myocytes are continuously exposed to fluid shear in vivo by relative movement of laminar sheets and adjacent cells. Preliminary observations have shown that neonatal myocytes respond to fluid shear by increasing their beating rate, which could have an arrhythmogenic effect under elevated shear conditions. The objective of this study is to investigate the characteristics of the fluid shear response in cultured myocytes and to study selected potential mechanisms. Cultured neonatal rat ventricular myocytes that were spontaneously beating were subjected to low shear rates (5–50/s) in a fluid flow chamber using standard culture medium. The beating rate was measured from digital microscopic recordings. The myocytes reacted to low shear rates by a graded and reversible increase in their spontaneous beating rate of up to 500%. The response to shear was substantially attenuated in the presence of the β-adrenergic agonist isoproterenol (by 86±8%), as well as after incubation with integrin-blocking RGD peptides (by 92±8%). The results suggest that the β-adrenergic signaling pathway and integrin activation, which are known to interact, may play an important role in the response mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dou, J., Tseng, W. Y., Reese, T. G., and Wedeen, V. J. (2003) Combined diffusion and strain MRI reveals structure and function of human myocardial laminar sheets in vivo. Magn. Reson. Med. 50, 107–113.

    Article  PubMed  Google Scholar 

  2. Dewey, C. F., Jr., Bussolari, S. R., Gimbrone, M. A., Jr., and Davies, P. F. (1981) The dynamic response of vascular endothelial cells to fluid shear stress. J. Biomech. Eng. 103, 177–185.

    Article  PubMed  Google Scholar 

  3. Sterpetti, A. V., Cucina, A., D'Angelo, L. S., Cardillo, B., and Cavallaro, A. (1992) Response of arterial smooth muscle cells to laminar flow. J. Cardiovasc. Surg. (Torino) 33, 619–624.

    CAS  Google Scholar 

  4. Moazzam, F., DeLano, F. A., Zweifach, B. W., and Schmid-Schonbein, G. W. (1997) The leukocyte response to fluid stress. Proc. Natl. Acad. Sci. USA 94, 5338–5343.

    Article  PubMed  CAS  Google Scholar 

  5. Coughlin, M. F., and Schmid-Schonbein, G. W. (2004) Pseudopod projection and cell spreading of passive leukocytes in response to fluid shear stress. Biophys. J. 87, 2035–2042.

    Article  PubMed  CAS  Google Scholar 

  6. Klein-Nulend, J., van der Plas, A., Semeins, C. M., et al. (1995) Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J. 9, 441–445.

    PubMed  CAS  Google Scholar 

  7. Belval, T., Hellums, J. D., and Solis, R. T. (1984) The kinetics of platelet aggregation induced by fluid-shearing stress. Microvasc. Res. 28, 279–288.

    Article  PubMed  CAS  Google Scholar 

  8. Nauli, S. M., Alenghat, F. J., Luo, Y., et al. (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 33, 129–137.

    Article  PubMed  CAS  Google Scholar 

  9. Davies, P. F. (1995) Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75, 519–560.

    PubMed  CAS  Google Scholar 

  10. Kong, C. R., Bursac, N., and Tung, L. (2005) Mechanoelectrical excitation by fluid jets in monolayers of cultured cardiac myocytes. J. Appl. Physiol. 98, 2328–2336.

    Article  PubMed  Google Scholar 

  11. Gopalan, S. M., Flaim, C., Bhatia, S. N., et al. (2003). Anisotropic stretch-induced hypertrophy in neonatal ventricular myocytes micropatterned on deformable elastomers. Biotechnol. Bioeng. 81, 578–587.

    Article  PubMed  CAS  Google Scholar 

  12. Torsoni, A. S., Constancio, S. S., Nadruz, W., Jr., Hanks, S. K., and Franchini, K. G. (2003) Focal adhesion kinase is activated and mediates the early hypertrophic response to stretch in cardiac myocytes. Circ. Res. 93, 140–147.

    Article  PubMed  CAS  Google Scholar 

  13. Shyu, K. G., Chen, C. C., Wang, B. W., and Kuan, P. (2001) Angiotensin II receptor antagonist blocks the expression of connexin43 induced by cyclical mechanical stretch in cultured neonatal rat cardiac myocytes. J. Mol. Cell. Cardiol. 33, 691–698.

    Article  PubMed  CAS  Google Scholar 

  14. Tanaka, N., Mao, L., DeLano, F. A., et al. (1997) Left ventricular volumes and function in the embryonic mouse heart. Am. J. Physiol. 273, H1368-H1376.

    PubMed  CAS  Google Scholar 

  15. Paul, S. (2003) Ventricular remodeling. Crit. Care Nurs. Clin. N. Am. 15, 407–411.

    Article  Google Scholar 

  16. Masuda, H., and Sperelakis, N. (1993) Inwardly rectifying potassium current in rat fetal and neonatal ventricular cardiomyocytes. Am. J. Physiol. 265, H1107-H1111.

    PubMed  CAS  Google Scholar 

  17. Gomez, J. P., Potreau, D., and Raymond, G. (1994) Intracellular calcium transients from newborn rat cardiomyocytes in primary culture. Cell Calcium 15, 265–276.

    Article  PubMed  CAS  Google Scholar 

  18. Cerbai, E., Pino, R., Sartiani, L., and Mugelli, A. (1999) Influence of postnatal-development of I(f) occurrence and properties in neonatal rat ventricular myocytes. Cardiovasc. Res. 42, 416–423.

    Article  PubMed  CAS  Google Scholar 

  19. Kimura, H., Takemura, H., Imoto, K., Furukawa, K., Ohshika, H., and Mochizuki, Y. (1998) Relation between spontaneous contraction and sarcoplasmic reticulum function in cultured neonatal rat cardiac myocytes. Cell Signal 10, 349–354.

    Article  PubMed  CAS  Google Scholar 

  20. Lakatta, E. G. (2004) Beyond Bowditch: the convergence of cardiac chronotropy and inotropy. Cell Calcium 35, 629–642.

    Article  PubMed  CAS  Google Scholar 

  21. Silva, J., and Rudy, Y. (2003) Mechanism of pacemaking in I(K1)-downregulated myocytes. Circ. Res. 92, 261–263.

    Article  PubMed  CAS  Google Scholar 

  22. Xiang, Y., Rybin, V. O., Steinberg, S. F., and Kobilka, B. (2002) Caveolar localization dictates physiologic signaling of beta 2-adrenoceptors in neonatal cardiac myocytes. J. Biol. Chem. 277, 34,280–34,286.

    CAS  Google Scholar 

  23. Abi-Gerges, N., Fischmeister, R., and Mery, P. F. (2001) G protein-mediated inhibitory effect of a nitric oxide donor on the L-type Ca2+ current in rat ventricular myocytes. J. Physiol. 531, 117–130.

    Article  PubMed  CAS  Google Scholar 

  24. Balligand, J. L., Kelly, R. A., Marsden, P. A., Smith, T. W., and Michel, T. (1993) Control of cardiac muscle cell function by an endogenous nitric oxide signaling system. Proc. Natl. Acad. Sci. USA 90, 347–351.

    Article  PubMed  CAS  Google Scholar 

  25. Devic, E., Xiang, Y., Gould, D., and Kobilka, B. (2001) Beta-adrenergic receptor subtype-specific signaling in cardiac myocytes from beta(1) and beta(2) adrenoceptor knockout mice. Mol. Pharmacol. 60, 577–583.

    PubMed  CAS  Google Scholar 

  26. Orita, H., Fukasawa, M., Hirooka, S., Uchino, H., Fukui, K., and Washio, M. (1993) Modulation of cardiac myocyte beating rate and hypertrophy by cardiac fibroblasts isolated from neonatal rat ventricle. Jpn Circ. J. 57, 912–920.

    PubMed  CAS  Google Scholar 

  27. Kroll, M. H., Hellums, J. D., McIntire, L. V., Schafer, A. I., and Moake, J. L. (1996) Platelets and shear stress. Blood 88, 1525–1541.

    PubMed  CAS  Google Scholar 

  28. Weinbaum, S., Cowin, S. C., and Zeng, Y. (1994) A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 27, 339–360.

    Article  PubMed  CAS  Google Scholar 

  29. Schmid-Schonbein, G. W. (1999) Biomechanics of microcirculatory blood perfusion. Annu. Rev. Biomed. Eng. 1, 73–102.

    Article  PubMed  CAS  Google Scholar 

  30. Cohn, J. N. (1995) Critical review of heart failure: the role of left ventricular remodeling in the therapeutic response. Clin. Cardiol. 18, IV4-IV12.

    Article  PubMed  CAS  Google Scholar 

  31. Lodge, N. J., and Normandin, D. E. (1997) Alterations in Ito1, Ikr and Ik1 density in the BIO TO-2 strain of syrian myopathic hamsters. J. Mol. Cell. Cardiol. 29, 3211–3221.

    Article  PubMed  CAS  Google Scholar 

  32. Knollmann, B. C., Knollmann-Ritschel, B. E., Weissman, N. J., Jones, L. R., and Morad, M. (2000) Remodelling of ionic currents in hypertrophied and failing hearts of transgenic mice overexpressing calsequestrin. J. Physiol. 525, 483–498.

    Article  PubMed  CAS  Google Scholar 

  33. Janse, M. J. (2004) Electrophysiological changes in heart failure and their relationship to arrhythmogenesis. Cardiovasc. Res. 61, 208–217.

    Article  PubMed  CAS  Google Scholar 

  34. Cerbai, E., Barbieri, M., and Mugelli, A. (1994) Characterization of the hyperpolarization-activated current, I(f), in ventricular myocytes isolated from hypertensive rats. J. Physiol. 481, 585–591.

    PubMed  CAS  Google Scholar 

  35. Reich, K. M., Gay, C. V., and Frangos, J. A. (1990) Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production. J. Cell. Physiol. 143, 100–104.

    Article  PubMed  CAS  Google Scholar 

  36. Bakker, A. D., Soejima, K., Klein-Nulend, J., and Burger, E. H. (2001) The production of nitric oxide and prostaglandin E(2) by primary bone cells is shear stress dependent. J. Biomech. 34, 671–677.

    Article  PubMed  CAS  Google Scholar 

  37. Slattery, M. J., Liang, S., and Dong, C. (2005) Distinct role of hydrodynamic sheart in leukocyte-facilitated tumor cell extravasation. Am. J. Physiol. Cell. Physiol. 288, C831-C839.

    Article  PubMed  CAS  Google Scholar 

  38. Reuter, H., Cachelin, A. B., De Peyer, J. E., and Kokubun, S. (1983) Modulation of calcium channels in cultured cardiac cells by isoproterenol and 8-bromo-cAMP. Cold Spring Harb. Symp. Quant. Biol. 48, 193–200.

    PubMed  CAS  Google Scholar 

  39. Ross, R. S., and Borg, T. K. (2001) Integrins and the myocardium. Circ. Res. 88, 1112–1119.

    Article  PubMed  CAS  Google Scholar 

  40. Wang, Y. G., Samarel, A. M., and Lipsius, S. L. (2000) Laminin acts via beta 1 integrin signalling to alter cholinergic regulation of L-type Ca(2+) current in cat atrial myocytes. J. Physiol. 526, 57–68.

    Article  PubMed  CAS  Google Scholar 

  41. Cheng, Q., Ross, R. S., and Walsh, K. B. (2004) Overexpression of the integrin beta(1A) subunit and the beta(1A) cytoplasmic domain modifies the beta-adrenergic regulation of the cardiac L-type Ca(2+) current. J. Mol. Cell. Cardiol. 36, 809–819.

    Article  PubMed  CAS  Google Scholar 

  42. Communal, C., Singh, M., Menon, B., Xie, Z., Colucci, W. S., and Singh, K. (2003) beta1 integrins expression in adult rat ventricular myocytes and its role in the regulation of beta-adrenergic receptor-stimulated apoptosis. J. Cell. Biochem. 89, 381–8.

    Article  PubMed  CAS  Google Scholar 

  43. Wang, Y. G., Samarel, A. M., and Lipsius, S. L. (2000) Laminin binding to beta1-integrins selectively alters beta1- and beta2-adrenoceptor signalling in cat atrial myocytes. J. Physiol. 527, 3–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey H. Omens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorenzen-Schmidt, I., Schmid-Schönbein, G.W., Giles, W.R. et al. Chronotropic response of cultured neonatal rat ventricular myocytes to short-term fluid shear. Cell Biochem Biophys 46, 113–122 (2006). https://doi.org/10.1385/CBB:46:2:113

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:46:2:113

Index Entries

Navigation