Skip to main content
Log in

Differential regulation of intracellular calcium oscillations by mitochondria and gap junctions

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

An Erratum to this article was published on 01 May 2006

Abstract

Fluctuations of intracellular Ca2+ ([Ca2+]i) regulate a variety of cellular functions. The classical Ca2+ transport pathways in the endoplasmic reticulum (ER) and plasma membrane are essential to [Ca2+]i oscillations. Although mitochondria have recently been shown to absorb and release Ca2+ during G protein-coupled receptor (GPCR) activation, the role of mitochondria in [Ca2+]i oscillations remains to be elucidated. Using fluo-3-loaded human teratocarcinoma NT2 cells, we investigated the regulation of [Ca2+]i oscillations by mitochondria. Both the muscarinic GPCR agonist carbachol and the ER Ca2+-adenosine triphosphate inhibitor thapsigargin (Tg) induced [Ca2+]i oscillations in NT2 cells. The [Ca2+]i oscillations induced by carbachol were unsynchronized among individual NT2 cells; in contrast, Tg-induced oscillations were synchronized. Inhibition of mitochondrial functions with either mitochondrial blockers or depletion of mitochondrial DNA eliminated carbachol—but not Tg-induced [Ca2+]i oscillations. Furthermore, carbachol-induced [Ca2+]i oscillations were partially restored to mitochondrial DNA-depleted NT2 cells by introduction of exogenous mitochondria. Treatment of NT2 cells with gap junction blockers prevented Tg-induced but not carbachol-induced [Ca2+]i oscillations. These data suggest that the distinct patterns of [Ca2+]i oscillations induced by GPCR and Tg are differentially modulated by mitochondria and gap junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gilon, P., Ravier, M. A., Jonas, J.-C., and Henquin, J.-C. (2002) Control mechanisms of the oscillations of insulin secretion in vitro and in vivo. Diabetes 51, S144-S151.

    Article  PubMed  CAS  Google Scholar 

  2. Dolmetsch, R. E., Lewis, R. S., Goodnow, C. C., and Healy, J. I. (1997) Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386, 855–858.

    Article  PubMed  CAS  Google Scholar 

  3. Li, W.-H., Liopis, J., Whitney, M., Ziokarnik, G., and Tsien, R. Y. (1998) Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression. Nature 392, 936–941.

    Article  PubMed  CAS  Google Scholar 

  4. Hajnoczky, G., Robb-Gaspers, L. D., Seitz, M. B., and Thomas, A. P. (1995) Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82, 415–424.

    Article  PubMed  CAS  Google Scholar 

  5. Shuttleworth, T. J. (1999) What drives calcium entry during [Ca2+]i oscillations?—challenging the capacitative model. Cell Calcium 25, 237–246.

    Article  PubMed  CAS  Google Scholar 

  6. Putney, J. W., Jr., and Bird, G. St. J. (1993) The inositol phosphate-calcium signaling system in nonexcitable cells. Endocr. Rev. 14, 610–631.

    Article  PubMed  CAS  Google Scholar 

  7. Sage, S. O., Adams, D. J., and Van Breeman, C. (1989) Synchronized oscillations in cytoplasmic free calcium concentration in confluent bradykinin-stimulated bovine pulmonary artery endothelial cell monolayers. J. Biol. Chem. 264, 6–9.

    PubMed  CAS  Google Scholar 

  8. Rottingen, J. A., Camerer, E., Mathiesen, I., Prydz, H., and Iversen, J. G. (1997) Synchronized Ca2+ oscillations induced in Madin Darby canine kidney cells by bradykinin and thrombin but not by ATP. Cell Calcium 21, 195–211.

    Article  PubMed  CAS  Google Scholar 

  9. Sell, M., Boldt, W., and Markwardt, F. (2002) Desynchronising effect of the endothelium on intracellular Ca2+ concentration dynamics in vascular smooth muscle cells of rat mesenteric arteries. Cell Calcium 32, 105–120.

    Article  PubMed  CAS  Google Scholar 

  10. Segawa, A., Takemura, H., and Yamashina, S. (2002) Calcium signalling in tissue: diversity and domain-specific integration of individual cell response in salivary glands. J. Cell Sci. 115, 1869–1876.

    PubMed  CAS  Google Scholar 

  11. Foskett, J. K., Roifman, C. M., and Wong, D. (1991) Activation of calcium oscillations by thapsigargin in parotid acinar cells. J. Biol. Chem. 266, 2778–2782.

    PubMed  CAS  Google Scholar 

  12. Foskett, J. K. and Wong, D. C. P. (1994) [Ca2+]i inhibition of Ca2+ release-activated Ca2+ influx underlies agonist-and thapsigargin-induced [Ca2+]i oscillations in salivary acinar cells. J. Biol. Chem. 269, 31525–31532.

    PubMed  CAS  Google Scholar 

  13. Usachev, Y. M. and Thayer, S. A. (1999) Ca2+ influx in resting rat sensory neurones that regulates and is regulated by ryanodine-sensitive Ca2+ stores. J. Physiol (London) 519, 115–130.

    Article  CAS  Google Scholar 

  14. Elliott, A. C. (2001) Recent developments in non-excitable cell calcium entry. Cell Calcium 30, 73–93.

    Article  PubMed  CAS  Google Scholar 

  15. Berridge, M. J., Bootman, M. D., and Roderick, H. L. (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nature Rev. Mol. Cell Biol. 4, 517–529.

    Article  CAS  Google Scholar 

  16. Lewis, R. S. and Cahalan, M. D. (1989) Mitogen-induced oscillations of cytosolic Ca2+ and transmembrane Ca2+ current in human leukemic T cells. Cell. Regul. 1, 99–112.

    PubMed  CAS  Google Scholar 

  17. Demaurex, N., Schlegel, W., Varnai, P., Mayr, G., Lew, D. P., and Krause, K.-H. (1992) Regulation of Ca2+ influx in myeloid cells. Role of plasma membrane potential, inositol phosphates, cytosolic free [Ca2+], and filling state of intracellular Ca2+ stores. J Clin Invest 90, 830–839

    Article  PubMed  CAS  Google Scholar 

  18. Donnadieu, E., Bismuth, G., and Trautmann, A. (1992) Calcium fluxes in T lymphocytes. J. Biol. Chem. 267, 25864–25872.

    PubMed  CAS  Google Scholar 

  19. Mertz, L. M., Baum, B. J., and Ambudkar, I. S. (1992) Membrane potential modulates divalent cation entry in rat parotid acini. J. Membr. Biol. 126, 183–193.

    PubMed  CAS  Google Scholar 

  20. Gilabert, J. A., Bakowski, D., and Parekh, A. B. (2001) Energized mitochondria increase the dynamic range over which inositol 1,4,5-trisphosphate activates store-operated calcium influx. EMBO J. 20, 2672–2679.

    Article  PubMed  CAS  Google Scholar 

  21. Vandecasteele, G., Szabadkai, G., and Rizzuto, R. (2001) Mitochondrial calcium homeostasis: mechanisms and molecules. IUBMB Life 52, 213–219.

    PubMed  CAS  Google Scholar 

  22. Tordjmann, T., Berthon, B., Claret, M., and Combettes, L. (1997) Coordinated intercellular calcium waves induced by noradrenaline in rat hepatocytes: dual control by gap junction permeability and agonist. EMBO J. 16, 5398–5407.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang, B.-X., Ma, X., Yeh, C.-K., Lifschitz, M. D., Zhu, M. X., and Katz, M. S. (2002) Epidermal growth factor-induced depletion of the intracellular Ca2+ store fails to activate capacitative Ca2+ entry in a human salivary cell line. J. Biol. Chem. 277, 48165–48171.

    Article  PubMed  CAS  Google Scholar 

  24. Rizzuto, R., Brini, M., Murgia, M., and Pozzan, T. (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262, 744–747.

    Article  PubMed  CAS  Google Scholar 

  25. Duchen, M. R. (1999) Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death. J Physiol (London) 516, 1–17.

    Article  CAS  Google Scholar 

  26. Swerdlow, R. H., Parks, J. K., Cassarino, D. S., et al. (1997) Cybrids in Alzheimer's disease: a cellular model of the disease? Neurology 49, 918–925.

    PubMed  CAS  Google Scholar 

  27. Robb-Gaspers, L. D., Rutter, G. A., Burnett, P., Hajnoczky, G., Denton, R. M., and Thomas, A. P. (1998) Coupling between cytosolic and mitochondrial calcium oscillations: role in the regulation of hepatic metabolism. Biochim. Biophys. Acta 1366, 17–32.

    Article  PubMed  CAS  Google Scholar 

  28. Jouaville, L. S., Ichas, F., Holmuhamedov, E. L., Camacho, P., and Lechleiter, J. D. (1995) Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature 377, 438–442.

    Article  PubMed  CAS  Google Scholar 

  29. Lawrie, A. M., Rizzuto, R., Pozzan, T., and Simpson, A. W. (1996) A role for calcium influx in the regulation of mitochondrial calcium in endothelial cells. J. Biol. Chem. 271, 10753–10759.

    Article  PubMed  CAS  Google Scholar 

  30. Babcock, D. F., Herrington, J., Goodwin, P. C., Park, Y. B., and Hille, B. (1997) Mitochondrial participation in the intracellular Ca2+ network. J. Cell. Biol. 136, 833–844.

    Article  PubMed  CAS  Google Scholar 

  31. Park, M. K., Ashby, M. C., Erdemli, G., Peterson, O. H., and Tepikin, A. V. (2001) Perinuclear, perigranular and subplasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport. EMBO J. 20, 1863–1874.

    Article  PubMed  CAS  Google Scholar 

  32. Colegrove, S. L., Albrecht, M. A., and Friel, D. D. (2000) Dissection of mitochondrial Ca2+ uptake and release fluxes in situ after depolarization-evoked [Ca2+]i elevations in sympathetic neurons. J. Gen. Physiol. 115, 351–370.

    Article  PubMed  CAS  Google Scholar 

  33. Collins, T. J., Lipp, P., Berridge, M. J., and Bootman, M. D. (2001) Mitochondrial Ca2+ uptake depends on the spatial and temporal profile of cytosolic Ca2+ signals. J. Biol. Chem. 276, 26411–26420.

    Article  PubMed  CAS  Google Scholar 

  34. David, G. (1999) Mitochondrial clearance of cytosolic Ca2+ in stimulated lizard motor nerve terminals proceeds without progressive elevation of mitochondrial matrix [Ca2+]. J. Neurosci. 19, 7495–7506.

    PubMed  CAS  Google Scholar 

  35. Friel, D. D. and Tsien, R. W. (1994) An FCCP-sensitive Ca2+ store in bullfrog sympathetic neurons and its participation in stimulus-evoked changes in [Ca2+]i. J. Neurosci. 14, 4007–4024.

    PubMed  CAS  Google Scholar 

  36. Cho, J. H., Balasubramanyam, M., Chernaya, G., et al. (1997) Oligomycin inhibits store-operated channels by a mechanism independent of its effects on mitochondrial ATP. Biochem. J. 324, 971–980.

    PubMed  CAS  Google Scholar 

  37. Gamberucci, A., Innocenti, B., Fulceri, R., et al. (1994) Modulation of Ca2+ influx dependent on store depletion by intracellular adenine-guanine nucleotide levels. J. Biol. Chem. 269, 23597–23602.

    PubMed  CAS  Google Scholar 

  38. Makowska, A., Zablocki, K., and Duszynski, J. (2000) The role of mitochondria in the regulation of calcium influx into Jurkat cells. Eur. J. Biochem. 267, 877–884.

    Article  PubMed  CAS  Google Scholar 

  39. Gilabert, J. A., Bakowski, D., and Parekh, A. B. (2001) Energized mitochondria increase the dynamic range over which inositol 1,4,5-trisphosphate activates store-operated calcium influx. EMBO J. 20, 2672–2679.

    Article  PubMed  CAS  Google Scholar 

  40. Glitsch, M. D., Bakowski, D., and Parekh, A. B. (2002) Store-operated Ca2+ entry depends on mitochondrial Ca2+ uptake. EMBO J. 21, 6744–6754.

    Article  PubMed  CAS  Google Scholar 

  41. Calabrese, A., Zhang, M., Serre-Beinier, V., et al. (2003) Connexin 36 controls synchronization of Ca2+ oscillations and insulin secretion in MIN6 cells. Diabetes 52, 417–424.

    Article  PubMed  CAS  Google Scholar 

  42. Guerineau, N. C., Bonnefont, X., Stoeckel, L., and Mollard, P. (1998) Synchronized spontaneous Ca2+ transients in acute anterior pituitary slices. J. Biol. Chem 273, 10389–10395.

    Article  PubMed  CAS  Google Scholar 

  43. Loewenstein, W. R. (1981) Junctional intercellular communication: the cell-to-cell membrane channel. Physiol. Rev. 61, 829–913.

    PubMed  CAS  Google Scholar 

  44. Contreras, J. E., Sanchez, H. A., Eugenin, E. A., et al. (2002) Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in cultures. Proc. Natl. Acad. Sci. USA 99, 495–500.

    Article  PubMed  CAS  Google Scholar 

  45. Saez, J. C., Connor, J. A., Spray, D. C., and Bennett, M. V. (1989) Hepatocyte gap junctions are permeable to the second messenger, inositol 1,4,5-trisphosphate, and to calcium ions. Proc. Natl. Acad. Sci. USA 86, 2708–2712.

    Article  PubMed  CAS  Google Scholar 

  46. Verselis, V. K., Trexler, E. B., and Bukauskas, F. F. (2000) Connexin hemichannels and cell-cell channels: comparison of properties. Brazilian J. Med. Biol. Res. 33, 379–389.

    CAS  Google Scholar 

  47. Verderio, C., Bruzzone, S., Zocchi, E., et al. (2001) Evidence of a role for cyclic ADP-ribose in calcium signalling and neurotransmitter release in cultured astrocytes. J. Neurochem. 78, 646–657.

    Article  PubMed  CAS  Google Scholar 

  48. Hofer, A. and Dermietzel, R. (1998) Visualization and functional blocking of gap junction hemichannels (connexons) with antibodies against external loop domains in astrocytes. Glia 24, 141–154.

    Article  PubMed  CAS  Google Scholar 

  49. Chou, H.-F., Berman, N., and Ipp, E. (1992) Oscillations of lactate released from islets of Langerhans: evidence for oscillatory glycolysis in β-cells. Am. J. Physiol. 262, E800-E805.

    PubMed  CAS  Google Scholar 

  50. Moravec, C. S. and Bond, M. (1991) Calcium is released from the junctional sarcoplasmic reticulum during cardiac muscle contraction. Am. J. Physiol. 260, H989-H997.

    PubMed  CAS  Google Scholar 

  51. King, M. P. and Attardi, G. (1989) Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Sciences 246, 500–503.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin-Xian Zhang.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1385/CBB:45:1:125.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, BX., Ma, X., Shu, Z. et al. Differential regulation of intracellular calcium oscillations by mitochondria and gap junctions. Cell Biochem Biophys 44, 187–203 (2006). https://doi.org/10.1385/CBB:44:2:187

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:44:2:187

Index Entries

Navigation