Skip to main content
Log in

Adapting the Quesant© Nomad atomic force microscope for biology and patch-clamp atomic force microscopy

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The Quesant© Nomad atomic force microscope (AFM) was modified to produce a reliable patch-clamp AFM for demanding biologic applications. The AFM's laser optics forms the basis of a condenser that allows simultaneous Köhler illumination and AFM imaging on an inverted optical microscope. The original AFM scan head was replaced with plastic and glass to make it biologically inert. A bevel cut in the new scan head permits clearance for patch clamp pipets. Cantilevers are attached to the scan head with a quick setting silicone rubber that is readily removable. Software was developed to (a) automate a gentle approach and set a specific feedback force, (b) provide a mouse-driven control of the X-Y position of the probe tip and recall of saved locations, and (c) measure force-distance curves over user defined paths. Additional modifications were made to minimize mechanical noise. The patch-clamp AFM achieves 600 fA (3 kHz bandwidth) and 1 Å RMS noise levels (10 kHz bandwidth). The correlation of electrical and mechanical information allows signal averaging and measures sub-Angstrom, sub-millisecond electromotile responses from cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Horber, J. K., Haberle, W., Ohnesorge, F., Binnig, G., Liebich, H. G., Czerny, C. P., et al. (1992) Investigation of living cells in the nanometer regime with the scanning force microscope. Scanning Micros. 6, 919–929.

    CAS  Google Scholar 

  2. Horber, J. K., Mosbacher, J., Haberle, W., Ruppersberg, J. P., and Sakmann, B. (1995) A look at membrane patches with a scanning force microscope. Biophysical J. 68, 1687–1693.

    CAS  Google Scholar 

  3. Mosbacher, J., Haberle, W., and Horber, J. K. (1996) Studying membranes with scanning force microscopy and patch clamp technique. J. Vasc. Sci. Technol. B 14, 1449–1452.

    Article  CAS  Google Scholar 

  4. Mosbacher, J., Langer, M., Horber, J. K., and Sachs, F. (1998) Voltage-dependent membrane displacements measured by atomic force microscopy. J. Gen. Physiol. 111, 65–74.

    Article  PubMed  CAS  Google Scholar 

  5. Langer, M. G., Offner, W., Wittmann, H., Flosser, H., Schaar, H., Haberle, W., et al. (1997) A scanning force microscope for simultaneous force and patch-clamp measurements on living cell tissues. Rev. Sci. Inst. 68, 2583–2590.

    Article  CAS  Google Scholar 

  6. Langer, M. G., Koitschev, A., Haase, H., Rexhausen, U., Horber, J. K. H., and Ruppersberg, J. P. (2000) Mechanical stimulation of individual stereocilia of living cochlear hair cells by atomic force microscopy. Ultramicroscopy 82, 269–278.

    Article  PubMed  CAS  Google Scholar 

  7. Horber, J. K., Mosbacher, J., and Haberle, W. (1995) Force microscopy on membrane patches, in Single-Channel Recording Sakmann, B. and Neher, E., eds. Plenum Press, New York.

    Google Scholar 

  8. Hansma, P. K., Drake, B., Grigg, D., Prater, C. B., Yashar, F., Gurley, G., et al. (1994) A new optical-lever based atomic force microscope. J. Appl. Phys. 76, 796–799.

    Article  Google Scholar 

  9. Henderson, E. and Sakaguchi, D. S. (1993) Imaging F-actin in fixed glial cells with a combined optical fluorescence/atomic force microscope. NeuroImage 1, 145–150.

    Article  PubMed  CAS  Google Scholar 

  10. Kaneko, R., Oguchi, S., Hara, S., Matsuda, R., Okada, T., Ogawa, H., and Nakamura, Y. (1992) Atomic force microscope coupled with an optical microscope. Ultramicroscopy 42–44, 1542–1548.

    Article  Google Scholar 

  11. Putman, C. A. J., van der Werf, K. O., de Grooth, B. G., van Hulst, N. F., Segerink, F. B., and Greve, J. (1992) Atomic force microscope with integrated optical microscope for biological applications. Rev. Sci. Instr. 63, 1914–1917.

    Article  CAS  Google Scholar 

  12. Radmacher, M., Eberle, K., and Gaub, H. E. (1992) An AFM with integrated micro fluorescence optics—design and performance. Ultramicroscopy 42–44, 968–972.

    Article  Google Scholar 

  13. Schabert, F., Knapp, H., Karrasch, S., Haring, R., and Engel, A. (1994) Confocal scanning laser-scanning probe hybrid microscope for biological applications. Ultramicroscopy 53, 147–157.

    Article  Google Scholar 

  14. Vesenka, J., Mosher, C., Schaus, S., Ambrosio, L., and Henderson, E. (1995) Combining optical and atomic force microscopy for life sciences research. Biotechniques 19, 729–737.

    Google Scholar 

  15. Lieberman, K., BenAmi, N., and Lewis, A. (1996) A fully integrated near-field optical, far-field optical and normal-force scanned probe microscope. Rev. Sci. Instr. 67, 3567–3572.

    Article  Google Scholar 

  16. Neagu, C., Vanderwerf, K. O., Putman, C. A. J., Kraan, Y. M., Degrooth, B. G., Vanhulst, N. F., and Greve, J. (1994) Analysis of immunolabeled cells by atomic force microscopy, optical microscopy, and flow cytometry. J. Struct. Biol. 112, 32–40.

    Article  PubMed  CAS  Google Scholar 

  17. Haberle, W., Horber, J. K., and Binnig, G. (1991) Force microscopy on living cells. J. Vasc. Sci. Technol. B 9, 1210–1213.

    Article  Google Scholar 

  18. Putman, C. A. J., van Leeuwen, A. M., de Grooth, B. G., Radosevic, K., van der Werf, K. O., van Hulst, N. F., and Greve, J. (1993) Atomic force microscopy combined with confocal laser scanning microscopy: a new look at cells. Bioimaging 1, 63–70.

    Article  Google Scholar 

  19. Lehenkari, P. P., Charras, G. T., Nykanen, A., and Horton, M. A. (2000) Adapting atomic force microscopy for cell biology. Ultramicroscopy 82, 289–295.

    Article  PubMed  CAS  Google Scholar 

  20. Horton, M., Charras, G., Ballestrem, C., and Lehenkari, P. (2000) Integration of atomic force and confocal microscopy. Single Molecules 1, 135–137.

    Article  CAS  Google Scholar 

  21. Nagao, E. and Dvorak, J. A. (1998) An integrated approach to the study of living cells by atomic force microscopy. J. Microsc. 191, 8–19.

    Article  PubMed  CAS  Google Scholar 

  22. Haydon, P. G., Lartius, R., Rarpura, V., and Marchese-Ragona, S. P. (1996) Membrane deformation of living glial cells using atomic force microscopy. J. Microsc. 182, 114–120.

    Article  PubMed  CAS  Google Scholar 

  23. Mathur, A. B., Truskey, G. A., and Reichert, W. M. (2000) Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells. Biophys. J. 78, 1725–1735.

    Article  PubMed  CAS  Google Scholar 

  24. Stemmer, A. (1995) A hybrid scanning force and light microscope for surface imaging and three-dimensional optical sectioning in differential interference contrast. J. Microsc. 178, 28–36.

    PubMed  CAS  Google Scholar 

  25. Nakano, K. (1998) A novel low profile atomic force microscope compatible with optical microscopes. Rev. Sci. Inst. 69, 1406–1409.

    Article  CAS  Google Scholar 

  26. Zhang, P. C., Keleshian, A. M., and Sachs, F. (2001) Voltage-induced membrane movement. Nature 413, 428–432.

    Article  PubMed  CAS  Google Scholar 

  27. Sachs, F. (1995) A low drift micropipette holder. Pflugers Arch. Eur. J. Physiol. 429, 434–435.

    Article  CAS  Google Scholar 

  28. Snyder, K. V., Kriegstein, A. M., and Sachs, F. (1999) A convenient electrode holder for glass pipettes to stabilize electrode potentials. Pflugers Arch. Eur. J. Physiol. 438, 405–411.

    Article  CAS  Google Scholar 

  29. Snyder, K. V., Zhang, P. C., and Sachs, F. (2001) Dynamic AF of patch clamped membranes, in Ion Channel Localization Methods and Protocols Lopatin, A. and Nichols, C. G., eds. Humana Press, Totowa, NJ.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Snyder.

Additional information

These authors contributed equally on this project.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Besch, S., Snyder, K.V., Zhang, P.C. et al. Adapting the Quesant© Nomad atomic force microscope for biology and patch-clamp atomic force microscopy. Cell Biochem Biophys 39, 195–210 (2003). https://doi.org/10.1385/CBB:39:3:195

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:39:3:195

Index Entries

Navigation