Skip to main content
Log in

Repair of oxidative DNA damage

Mechanisms and functions

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Cellular genomes suffer extensive damage from exogenous agents and reactive oxygen species formed during normal metabolism. The MutT homologs (MutT/MTH) remove oxidized nucleotide precursors so that they cannot be incorporated into DNA during replication. Among many repair pathways, the base excision repair (BER) pathway is the most important cellular protection mechanism responding to oxidative DNA damage. The 8-oxoG glycosylases (Fpg or MutM/OGG) and the MutY homologs (MutY/MYH) glycosylases along with MutT/MTH protect cells from the mutagenic effects of 8-oxoG, the most stable and deleterious product known caused by oxidative damage to DNA. The key enzymes in the BER process are DNA glycosylases, which remove different damaged bases by cleavage of the N-glycosylic bonds between the bases and the deoxyribose moieties of the nucleotide residues. Biochemical and structural studies have demonstrated the substrate recognition and reaction mechanism of BER enzymes. Cocrystal structures of strated the substrate recognition and reaction mechanism of BER enzymes. Cocrystal structures of several glycosylases show that the substrate base flips out of the sharply bent DNA helix and the minor groove is widened to be accessed by the glycosylases. To complete the repair after glycosylase action, the apurinic/apyrimidinic (AP) site is further processed by an incision step, DNA synthesis, an excision step, and DNA ligation through two alternative pathways. The short-patch BER (1-nucleotide patch size) and long-patch BER (2–6-nucleotide patch size) pathways need AP endonuclease to generate a 3′ hydroxyl group but require different sets of enzymes for DNA synthesis and ligation. Protein-protein interactions have been reported among the enzymes involved in BER. It is possible that the successive players in the repair pathway are assembled in a complex to perform concerted actions. The BER pathways are proposed to protect cells and organisms from mutagenesis and carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Halliwell, B. and Gutteridge, J. M. C. (1989) Free Radicals in Biology and Medicine. New York, Oxford University Press.

    Google Scholar 

  2. Esterbauer, H., Eckl, P., and Ortner, A. (1990) Possible mutagens derived from lipids and lipid precursors. Mutat. Res. 238, 223–233.

    PubMed  CAS  Google Scholar 

  3. Fraga, C. G., Shigenaga, M. K., Park, J.-W. Degan, P., and Ames, B. N. (1990) Oxidative damage to DNA during aging: 8-hydroxy-2′-deoxyguanosine in rat organ DNA and urine. Proc. Natl. Acad. Sci. USA 87, 4533–4537.

    PubMed  CAS  Google Scholar 

  4. Ames, B. N. and Shigenaga, M. K. (1993) Oxidants are a major contributor to cancer and aging, in DNA and Free Radicals Halliwell, B. and Aruoma, O. (eds.), New York, Ellis Horwood, pp. 1–18.

    Google Scholar 

  5. Wallace, D. C., Schoffner, J. M. Trounce, I., Brown, M. D., Ballinger, S. W., Corral-Debrinski, M., et al. (1995) Mitochondrial DNA mutations in human degenerative diseases and aging. Biochem. Biophys. Acta 1271, 141–151.

    PubMed  Google Scholar 

  6. Wiseman, H. and Halliwell, B. (1996) Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem. J. 313, 17–29.

    PubMed  CAS  Google Scholar 

  7. Shibutani, S., Takeshita, M., and Grollman, A. P. (1991) Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 349, 431–434.

    PubMed  CAS  Google Scholar 

  8. Cheng, K. C., Cahill, D. S., Kasai, H., Nishimura, S., and Loeb, L. A. (1991) 8-Hydroxyguanine, an abudant form of oxidative DNA damage, causes G-T and A-C substitutions. J. Biol. Chem., 267, 166–172.

    Google Scholar 

  9. Michaels, M. L. and Miller, J. H. (1992) The GO system protects organisms from the mutagenic effect of the spontaneous lesion 8-hydroxyguanine (7,8-dihydro-8-oxo-guanine). J. Bacteriol. 174, 6321–6325.

    PubMed  CAS  Google Scholar 

  10. Moriya, M. (1993) Single-stranded shuttle phagemid for mutagenesis studies in mammalian cells: 8-oxoguanine in DNA induces targeted G:C to T:A transversions in simian kidney cells. Proc. Natl. Acad. Sci. USA 90, 1122–1126.

    PubMed  CAS  Google Scholar 

  11. Wood, M. L., Dizdaroglu, M., Gajewski, E., and Essigmann, J. M. (1990) Mechanistic studies of ionizing radiation and oxidative mutagenesis: genetic effects of single 8-hydroxyguanine (7-hydro-8-oxoguanine) residue inserted at a unique site in a viral genome. Biochemistry 29, 7024–7032.

    PubMed  CAS  Google Scholar 

  12. Swanson, R. L., Morey, N. J., Doetsch, P. W., and Jinks-Robertson, S. (1999) Overlapping specificities of base excision repair, nucleotide excision repair, recombination, and translesion synthesis pathways for DNA base damage in Saccharomyces cerevisiae. Mol. Cell Biol. 19 2929–2935.

    PubMed  CAS  Google Scholar 

  13. McCullough, A. K., Dodson, M. L., and Lloyd, R. S. (1999) Initiation of base excision repair: glycosylase mechanisms and structures. Annu. Rev. Biochem. 68, 255–285.

    PubMed  CAS  Google Scholar 

  14. Akiyama, M., Maki, H., Sekiguchi, M., and Horiuchi, T. (1989) A specific role of MutT protein: to prevent dGdA mispairing in DNA replication. Proc. Natl. Acad. Sci. USA 86, 3949–3952.

    PubMed  CAS  Google Scholar 

  15. Maki, H. and Sekiguchi, M. (1992) MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature 355, 273–275.

    PubMed  CAS  Google Scholar 

  16. Tchou, J. and Grollman, A. P. (1993) Repair of DNA containing the oxidatively-damaged base 8-hydroxyguanine. Mutat. Res. 299, 277–287.

    PubMed  CAS  Google Scholar 

  17. Chetsanga, C. J. and Lindahl, T. (1979) Release of 7-methylguanine residues whose imidazole rings have been opened from damaged DNA by a DNA glycosylase from Escherichia coli. Nucleic Acids Res. 6, 3673–3683.

    PubMed  CAS  Google Scholar 

  18. Tchou, J., Kasai, H., Shibutani, S., Chung, M.-H., Grollman, A. P., and Nishimura, S. (1991) 8-Oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate specificity. Proc. Natl. Acad. Sci. USA 88, 4690–4694.

    PubMed  CAS  Google Scholar 

  19. Michaels, M. L., Cruz, C., Grollman, A. P., and Miller, J. H. (1992) Evidence that MutM and MutY combine to prevent mutations by an oxidatively damaged form of guanine in DNA. Proc. Natl. Acad. Sci. USA 89, 7022–7025.

    PubMed  CAS  Google Scholar 

  20. Ohtsubo, T., Nishioka, K., Imaiso, Y., Iwai, S., Shimokawa, H., Oda, H., et al. (2000) Identification of human MutY homolog (hMYH) as a repair enzyme for 2-hydroxyadanine in DNA and detection of multiple forms of hMYH located in nuclei and mitochondria. Nucleic Acids Res. 28, 1355–1364.

    PubMed  CAS  Google Scholar 

  21. Slupska, M. M., Baikalov, C., Luther, W. M., Chiang, J.-H., Wei, Y.-F., and Miller, J. H. (1996) Cloning and sequencing a human homolog (hMYH) of the Escherichia coli mutY gene whose function is required for the repair of oxidative DNA damage. J. Bacteriol. 178, 3885–3892.

    PubMed  CAS  Google Scholar 

  22. Slupska, M. M., Luther, W. M., Chiang, J. H., Yang, H., and Miller, J. H. (1999) Functional expression of hMYH, a human homolog of the Escherichia coli MutY protein. J. Bacteriol. 181, 6210–6213.

    PubMed  CAS  Google Scholar 

  23. Takao, M., Zhang, Q. M., Yonei, S., and Yasui, A. (1999) Differential subcellular localization of human MutY homolog (hMYH) and the functional activity of adenine: 8-oxoguanine DNA glycosylase. Nucleic Acids Res. 27, 3638–3644.

    PubMed  CAS  Google Scholar 

  24. Yeh, Y.-C., Chang, D.-Y., Masin, J., and Lu, A. L. (1991) Two nicking enzymes systems specific for mismatch-containing DNA in nuclear extracts from human cells. J. Biol. Chem. 266, 6480–6484.

    PubMed  CAS  Google Scholar 

  25. Boiteux, S. and Radicella, J. P. (1999) Base excision repair of 8-hydroxyguanine, protects DNA from endogenous oxidative stress. Biochimie 81, 59–67.

    PubMed  CAS  Google Scholar 

  26. Radicella, J. P., Dherin, C., Desmaze, C., Fox, M. S., and Boiteux, S. (1997) Cloning and characterization of hOGG1, a human homolog of the OGG1 gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 94, 8010–8015.

    PubMed  CAS  Google Scholar 

  27. Roldan-Arjona, T., Wei, Y.-F., Carter, K. C., Klungland, A., Anselmino, C., Wang, R.-P. et al. (1997) Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8-hydroxyguanine-DNA glycosylase. Proc. Natl. Acad. Sci. USA 94, 8016–8020.

    PubMed  CAS  Google Scholar 

  28. Shinmura, K., Kasai, H., Sasaki, A., Sugimura, H., and Yokota, J. (1997) 8-hydroxyguanine (7,8-dihydro-8-oxoguanine) DNA glycosylase and AP lyase activities of hOGG1 protein and their substrate specificity. Mutat. Res. 385, 75–82.

    PubMed  CAS  Google Scholar 

  29. McLennan, A. G. (1999) The MutT motif family of nucleotide phosphohydrolases in man and human pathogens. Int. J. Mol. Med. 4, 79–89.

    PubMed  CAS  Google Scholar 

  30. Mo, J.-Y., Maki, H., and Sekiguchi, M. (1992) Hydrolytic elimination of a mutagenic nucleotide, 8-oxodGTP, by human 18-kilodalton protein: sanitization of nucleotide pool. Proc. Natl. Acad. Sci USA 89, 11,021–11,025.

    CAS  Google Scholar 

  31. Sakumi, K., Furuichi, M., Tsuzuki, T., Kakuma, T., Kawabata, S.-I., Maki, H., et al. (1993) Cloning and expression of cDNA for a human enzyme that hydrolyzes 8-oxo-dGTP, a mutagenic substrate for DNA synthesis. J. Biol. Chem. 268, 23,524–23,530.

    CAS  Google Scholar 

  32. Bhatnagar, S. and Bessman, M. J. (1988) Studies on the mutator gene, mutT of Escherichia coli: molecular cloning of the gene, purification of the gene product, and identification of a novel nucleoside triphosphatase. J. Biol. Chem. 263, 8953–8957.

    PubMed  CAS  Google Scholar 

  33. Tajiri, T., Maki, H., and Sekiguchi, M. (1995) Functional cooperation of MutT, MutM and MutY proteins in preventing mutations caused by spontaneous oxidation of guanine nucleotide in Escherichia coli. Mutat. Res. 336, 257–267.

    PubMed  CAS  Google Scholar 

  34. Fujii, Y., Shimokawa, H., Sekiguchi, M., and Nakabeppu, Y. (1999) Functional significance of the conserved residues for the 23-residue module among MTH1 and MutT family proteins. J. Biol. Chem. 274, 38,251–38,259.

    CAS  Google Scholar 

  35. Shimokawa, H., Fujii, Y., Furuichi, M., Sekiguchi, M., and Nakabeppu, Y. (2000) Functional significance of conserved residues in the phosphohydrolase module of Escherichia coli MutT protein. Nucleic Acids Res. 28, 3240–3249.

    PubMed  CAS  Google Scholar 

  36. Kang, D., Nishida, J., Iyama, A., Nakabeppu, Y., Furuichi, M., Fujiwara, T., et al. (1995) Intracellular localization of 8-oxo-dGTPase in human cells, with special reference to the role of the enzyme in mitochondria. J. Biol. Chem. 270, 14,659–14,665.

    CAS  Google Scholar 

  37. Fujikawa, K., Kamiya, H., Yakushiji, H., Fuiji, Y., Nakabeppu, Y., and Kasai, H. (1999) The oxidized forms of dATP are substrates for the human MutT homologue, the hMTH1 protein. J. Biol. Chem. 274, 18,201–18,205.

    Article  CAS  Google Scholar 

  38. Mildvan, A. S., Weber, D. J., and Abeygunwardana, C. (1999) Solution structure and mechanism of the MutT pyrophos-phohydrolase. Adv. Enzymol. Relat. Areas Mol. Biol. 73, 183–207.

    PubMed  CAS  Google Scholar 

  39. Abeygunawardana, C., Weber, D. J., Gittis, A. G., Frick, D. N., Lin, J., Miller, A. F., et al. (1995) Solution structure of the MutT enzyme, a nucleoside triphosphate pyrophosphohydrolase. Biochemistry 34, 14,997–15,005.

    CAS  Google Scholar 

  40. David, S. S. and Williams, S. D. (1998) Chemistry of glycosylase and endonuclease involved in base-excision repair. Chem. Rev. 98, 1221–1261.

    PubMed  CAS  Google Scholar 

  41. Mol, C. D., Parikh, S. S., Putnam, C. D., Lo, T. P., and Tainer, J. A. (1999) DNA repair mechanisms for the recognition and removal of damaged DNA bases. Annu. Rev. Biophys. Biomol. Struct. 28, 101–128.

    PubMed  CAS  Google Scholar 

  42. Wallace, S. S. (1998) Enzymatic processing of radiation-induced free radical damage in DNA. Radiat. Res. 150, S60-S79.

    PubMed  CAS  Google Scholar 

  43. Cunningham, R. P. (1997) DNA glycosylases. Mutat. Res. 383, 189–196.

    PubMed  CAS  Google Scholar 

  44. Hazra, T. K., Izumi, T., Venkataraman, R., Kow, Y. W., Dizdaroglu, M., and Mitra, S. (2000) Characterization of a novel 8-oxoguanine-DNA glycosylase activity in Escherichia coli and identification of the enzyme as endonuclease VIII. J. Biol. Chem. 275, 27,762–27,767.

    CAS  Google Scholar 

  45. Jiang, D., Hatahet, Z., Melamede, R. J., Kow, Y. W., and Wallace, S. S. (1997) Characterization of Escherichia coli endonuclease VIII. J. Biol. Chem. 272, 32,230–32,239.

    CAS  Google Scholar 

  46. Zhang, Q. M., Miyabe, I., Matsumoto, Y., Kino, K., Sugiyama, H., and Yonei, S. (2000) Identification of repair enzymes for 5-formyluracil in DNA. Nth, nei, and MutM proteins of Escherichia coli. J. Biol. Chem. 275, 35,471–35,477.

    CAS  Google Scholar 

  47. Bruner, S. D., Nash, H. M., Lane, W. S., and Verdine, G. L. (1998) Repair of oxidatively damaged guanine in Saccharomyces cerevisine by an alternative pathway. Curr. Biol. 8, 393–403.

    PubMed  CAS  Google Scholar 

  48. You, H. J., Swanson, R. L., and Doetsch, P. W. (1998) Saccharomyces cerevisiae possesses two functional homologues of Escherichia coli endonuclease III. Biochemistry 37, 6033–6040.

    PubMed  CAS  Google Scholar 

  49. You, H. J., Swanson, R. L., Harrington, C., Corbett, A. H., Jinks-Robertson, S., Senturker, S., et al. (1999) Saccharomyces cerevisiae Ntg1p and Ntg2p: broad specificity N-glycosylases for the repair of oxidative DNA damage in the nucleus and mitochondria. Biochemistry 38, 11,298–11,306.

    CAS  Google Scholar 

  50. Asagoshi, K., Yamada, T., Okada, Y., Terato, H., Ohyama, Y., Seki S., et al. (2000) Recognition of formamidopyrimidine by Escherichia coli and mammalian thymine glycol glycosylases. Distinctive paired base effects and biological and mechanistic implications. J. Biol. Chem. 275, 24,781–24,786.

    CAS  Google Scholar 

  51. Asagoshi, K., Odawara, H., Nakano, H., Miyano, T., Terato, H., Ohyama, Y., et al. (2000) Comparison of substrate specificities of Escherichia coli endonuclease III and its mouse homologue (mNTH1) using defined oligonucleotide substrates. Biochemistry 39, 11,389–11,398.

    CAS  Google Scholar 

  52. Hilbert, T. P., Boorstein, R. J., Kung, H. C., Bolton, P. H., Xing, D., Cunningham, R. P., et al. (1996) Purification of a mammalian homologue of Escherichia coli endonyclease III: identification of a bovine pyrimidine hydrate-thymine glycol DNA-glycosylase/AP lyase by irreversible cross linking to a thymine glycol-containing oligonucleotide. Biochemistry 35, 2505–2511.

    PubMed  CAS  Google Scholar 

  53. Zhang, Q. M., Sugiyama, H., Miyabe, I., Matsuda, S., Saito, I., and Yonei, S. (1997) Replication of DNA templates containing 5-formyluracil, a major oxidative lesion of thymine in DNA. Nucleic Acids Res. 25, 3969–3973.

    PubMed  CAS  Google Scholar 

  54. Bjelland, S., Birkeland, N. K., Benneche, T., Volden, G., and Seeberg, E. (1994) DNA glycosylase activities for thymine residues oxidized in the methyl group are functions of the AlkA enzyme in Escherichia coli. J. Biol. Chem. 269, 30,489–30,495.

    CAS  Google Scholar 

  55. Masaoka, A., Terato, H., Kobayashi,M., Honsho, A., Ohyama, Y., and Ide, H. (1999) Enzymatic repair of 5-formyluracil. I. Excision of 5-formyluracil site-specifically incorporated into oligonucleotide substrates by AIKA protein (Escherichia coli 3-methyladenine DNA glycosylase II). J. Biol. Chem. 274, 25,136–25,143.

    CAS  Google Scholar 

  56. Hatahet, Z., Kow, Y. W., Purmal, A. A., Cunningham, R. P., and Wallace, S. S. (1994) New substrates for old enzymes: 5-hydroxy-2′-deoxycytidine and 5-hydroxy-2′deoxyuridine are substrates for Escherichia coli endinuclease III and formamidopyrimidine DNA N-glycosylase, while 5-hydroxy-2′-deoxyuidine is a substrate for uracil DNA N-glycosylase. J. Biol. Chem. 269, 18,814–18,820.

    CAS  Google Scholar 

  57. Purmal, A. A., Lampman, G. W., Bond, J. P., Hatahet, Z., and Wallace, S. S. (1998) Enzymatic processing of uracil glycol, a major oxidative product of DNA cytosine. J. Biol. Chem. 273, 10,026–10,035.

    CAS  Google Scholar 

  58. Castaing, B., Boiteux, S., and Zelwer, C. (1992) DNA containing a chemically reduced apurinic site is a high affinity ligand for the E. coli formamidopyrimidine-DNA glycosylase. Nucleic Acids Res. 20, 389–394.

    PubMed  CAS  Google Scholar 

  59. Blaisdell, J. O., Hatahet, Z., and Wallace, S. S. (1999) A novel role for Escherichia coli endonuclease VIII in prevention of spontaneous G→T transversions. J. Bacteriol. 181, 6396–6402.

    PubMed  CAS  Google Scholar 

  60. Dherin, C., Radicella, J. P., Dizdaroglu, M., and Boiteux, S. (1999) Excision of oxidatively damaged DNA bases by the human alpha-hOgg1 protein and the polymorphic alpha-hOgg1 (Ser326Cys) protein which is frequently found in human populations. Nucleic Acids Res. 27, 4001–4007.

    PubMed  CAS  Google Scholar 

  61. Aburatani, H., Hippo, Y., Ishida, T., Takashima, R., Matsuba, C., Kodama, T., et al. (1997) Cloning and characterization of mammalian 8-hydroxy guanine-specific DNA glycosylase/apurinic, apyrimidinic lyase, a functional MutM homologue. Cancer Res. 57, 2151–2156.

    PubMed  CAS  Google Scholar 

  62. Lu, R., Nash, H. M., and Verdine, G. L. (1997) A mammalian DNA repair enzyme that excises oxidatively damaged guanines maps to a locus frequently lost in lung cancer. Curr. Biol. 7, 397–407.

    PubMed  CAS  Google Scholar 

  63. Takao, M., Aburatani, H., Kobayashi, K., and Yasui, A. (1998) Mitochondrial targeting of human DNA glycosylases for repair of exidative DNA damage. Nucleic Acids Res. 26, 2917–2922.

    PubMed  CAS  Google Scholar 

  64. Nash, H. M., Lu, R., Lane, W. S., and Verdine, G. L. (1997) The critical active-site amine of human 8-oxoguanine DNA glycosylase, hOgg1: direct indentification, ablation and chemical reconstitution. Chem. Biol. 4, 693–702.

    PubMed  CAS  Google Scholar 

  65. Bruner, S. D., Norman, D. P., and Verdine, G. L. (2000) Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 403, 859–866.

    PubMed  CAS  Google Scholar 

  66. Nash, H. M., Bruner, S. D., Scharer, O. D., Kawate, T., Addona, T. A., Spooner, E.,et al. (1996) Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily. Curr. Biol. 6, 968–980.

    PubMed  CAS  Google Scholar 

  67. Hazra, T. K., Izumi, T., Maidt, L., Floyd, R. A., and Mitra, S. (1998) The presence of two distinct 8-oxoguanine repair enzymes in human cells: their potential complementary roles in preventing mutation. Nucleic Acids Res. 26, 5116–5122.

    PubMed  CAS  Google Scholar 

  68. Au, K. G., Cabrera, M., Miller, J. H., and Modrich, P. (1988) Escherichia coli mutY gene product is required for specific A/G to C: G mismatch correction. Proc. Natl. Acad. Sci. USA 85, 9163–9166.

    PubMed  CAS  Google Scholar 

  69. Lu, A-L. and Chang, D.-Y. (1988) Repair of single base pair transversion mismatches of Escherichia coli in vitro: correction of certain A/G mismatch is independent of dam methylation and host mutHLS gene functions. Genetics 118, 593–600.

    PubMed  CAS  Google Scholar 

  70. Lu, A.-L. and Chang, D.-Y. (1988) A novel nucleotide excision repair for the conversion of an A/G mismatch to C/G base pair in E. coli. Cell 54, 805–812.

    PubMed  CAS  Google Scholar 

  71. Radicella, J.P., Clark, E. A., and Fox, M. S. (1988) Some mismatch repair activities in Escherichia coli. Proc. Natl. Acad. Sci. USA 85, 9674–9678.

    PubMed  CAS  Google Scholar 

  72. Su, S.-S., Lahue, R. S., Au, K. G., and Modrich, P. (1988) Mispair specificity of methyl-directed DNA mismatch correction in vitro. J. Biol. Chem. 263, 6829–6835.

    PubMed  CAS  Google Scholar 

  73. Li, X., Wright, P. M., and Lu, A.-L. (2000). The C-terminal domain of MutY glycosylase determines the 7,8-dihydro-8-oxo-guanine specificity and is crucial for mutation avoidance. J. Biol. Chem. 275, 8448–8455.

    PubMed  CAS  Google Scholar 

  74. Zhang, Q. M., Ishikawa, N., Nakahara, T., and Yonei, S. (1998) Escherichia coli MutY protein has a guanine-DNA glycosylase that acts on 7,8-dihydro-8-oxoguanine: guanine mispair to prevent spontaneous G: C to C: G transversions. Nucleic Acids Res. 26, 4669–4675.

    PubMed  CAS  Google Scholar 

  75. Michaels, M. L., Pham, L., Nghiem, Y., Cruz, C., and Miller, J. H. (1990) MutY, an adenine glycosylase active on G-A mispairs, has homology to endonuclease III. Nucleic Acids Res. 18, 3841–3845.

    PubMed  CAS  Google Scholar 

  76. Tsai-Wu, J.-J., Liu, H.-F., and Lu, A.-L. (1992) Escherichia coli MutY protein has both N-glycosylase and apurinic/apyrimidinic endonuclease activities on A: C and A: G mispairs. Proc. Natl. Acad. Sci. USA 89, 8779–8783.

    PubMed  CAS  Google Scholar 

  77. Gogos, A., Cillo, J., Clarke, N. D., and Lu, A-L., (1996) Specific recognition of A/G and A/8-oxoG mismatches by Escherichia coli MutY: removal of the C-terminal domain preferentially affects A/8-oxoG recognition. Biochemistry 35, 16,665–16,671.

    CAS  Google Scholar 

  78. Manuel, R. C., Czerwinski, E. W., and Lloyd, R. S. (1996) Identification of the structural and functional domains of MutY, an Escherichia coli DNA mismatch repair enzyme. J. Biol. Chem. 271, 16,218–16,226.

    CAS  Google Scholar 

  79. Manuel, R. C. and Lloyd, R. S. (1997) Cloning, overexpression, and biochemical characterization of the catalytic domain of MutY. Biochemistry 36, 11,140–11,152.

    CAS  Google Scholar 

  80. Noll, D. M., Gogos, A., Granek, J. A., and Clarke, N. D. (1999) The C-terminal domain of the adenine-DNA glycosylase MutY confers specificity for 8-oxoguanine adenine mispairs and may have evolved from MutT, an 8-oxodGTPase. Biochemistry 38, 6374–6579.

    PubMed  CAS  Google Scholar 

  81. Guan, Y., Manuel, R. C., Arvai, A. S., Parikh, S. S., Mol, C. D., Miller, J. H., et al. (1998) MutY catalytic core, mutant and bound adenine structures define specificity for DNA repair enzyme superfamily. Nature Struct. Biol. 5, 1058–1064.

    PubMed  CAS  Google Scholar 

  82. Volk, D. E., House, P. G., Thiviyanathan, V., Luxon, B. A., Zhang, S., Lloyd, R. S. et al. (2000) Structural similarities between MutT and the C-terminal domain of MutY. Biochemistry 39, 7331–7336.

    PubMed  CAS  Google Scholar 

  83. Lu, A-L. and Fawcett, W. P. (1998) Characterization of the recombinant MutY homolog, an adenine DNA glycosylase, from Schizosacchromyces pombe. J. Biol. Chem. 273, 25,098–25,105.

    CAS  Google Scholar 

  84. McGoldrick, J. P., Yeh, Y.-C., Solomon, M., Essigmann, J. M., and Lu, A.-L. (1995) Characterization of a mammalian homolog of the Escherichia coli MutY mismatch repair protein. Mol. Cell. Biol. 15, 989–996.

    PubMed  CAS  Google Scholar 

  85. Tsai-Wu, J.-J., Su, H.-T., Wu, Y.-L., Hsu, S.-M., and Wu, C. H. H. (2000) Nuclear localization of the human MutY homologue hMYH. J. Cell. Biochem. 77, 666–677.

    PubMed  CAS  Google Scholar 

  86. Shinmura, K., Yamaguchi, S., Saitoh, T., Takeuchi-Sasaki, M., Kim, S. R., Nohmi, T., et al. (2000) Adenine excisional repair function of MYH protein on the adenine: 8-hydroxyguanine base pair in double-stranded DNA. Nucleic Acids Res. 28, 4912–4918.

    PubMed  CAS  Google Scholar 

  87. Gu, Y. and Lu A-L. (2001) Differential DNA recognition and glycosylase activity of the native human MutY homolog (hMYH) and recombinant hMYH expressed in bacteria. Nucleic Acids Res. 29, 2666–2674.

    PubMed  CAS  Google Scholar 

  88. Parker, A., Gu, Y., and Lu, A-L (2000) Purification and characterization of a mammalian homolog of Escherichia coli MutY mismatch repair protein from calf liver mitochondria. Nucleic Acids Res. 28, 3206–3215.

    PubMed  CAS  Google Scholar 

  89. Lahue, R. S., Au, K. G., and Modrich, P. (1989) DNA mismatch correction in a defined system. Science 245, 160–164.

    PubMed  CAS  Google Scholar 

  90. Lu, A-L (1998) Biochemistry of mammalian DNA mismatch repair, in DNA Repair in Higher Eukaryotes, Hoelm, H., and Nicolaides, N. C. (eds.), Humana Ps, Totowa, NJ, Vol. 2, pp. 95–118.

    Google Scholar 

  91. Kolodner, R. D. and Alani, E. (1994) Mismatch repair and cancer susceptibility. Curr. Opin. Biotech. 5, 585–594.

    PubMed  CAS  Google Scholar 

  92. Modrich, P. and Lahue, R. S. (1996) Mismatch repair in replication fidelity, genetic recombination and cancer biology. Annu. Rev. Biochem. 65, 101–133.

    PubMed  CAS  Google Scholar 

  93. Modrich, P. (1991) Mechanisms and biological effects of mismatch repair. Annu. Rev. Genet. 25, 229–253.

    PubMed  CAS  Google Scholar 

  94. Terato, H., Masaoka, A., Kobayashi, M., Fukushima, S., Ohyama, Y., Yoshida, M., et al. (1999) Enzymatic repair of 5-formyluracil. II. Mismatch formation between 5-formyluracil and guanine during DNA replication and its recognition by two proteins involved in base excision repair (AlkA) and mismatch repair (MutS). J. Biol. Chem. 274, 25,144–25,150.

    CAS  Google Scholar 

  95. Masaoka, A., Kobayashi, M., Terato, H., Ohyama, Y., and Ide, H. (1999)Cellular repair mechanism of 5-formyluracil. Nucl. Acids Symp. Ser. 42, 291–292.

    CAS  Google Scholar 

  96. Zhao, J. and Winkler, M. E. (2000) Reduction of GC→TA transversion mutation by overexpression of MutS in Escherichia coli K-12. J. Bacteriol. 182, 5025–5028.

    PubMed  CAS  Google Scholar 

  97. Leadon, S. A. and Avrutskaya, A. V. (1997) Differential involvement of the human mismatch repair proteins, hMLH1 and hMSH2, in transcriptio-coupled repair. Cancer Res. 57, 3784–3791.

    PubMed  CAS  Google Scholar 

  98. DeWeese, T. L., Shipman, J. M., Larrier, N. A., Buckley, N. M., Kidd, L. R., Groopman, J. D., et al. (1998) Mouse embryonic stem cells carrying one or two defective Msh2 alleles respond abnormally to oxidative stree inflicted by low-level radiation. Proc. Natl. Acad. Sci. USA 95, 11,915–11,920.

    CAS  Google Scholar 

  99. Ni, T. T. M. G. T. and Kolodner, R. (1999) MSH2 and MSH6 are required for removal of adenine misincorporated opposite 8-oxo-guanine in S. cerevisine. Mol. Cell. 4, 439–444.

    PubMed  CAS  Google Scholar 

  100. Hollis, T., Ichikawa, Y., and Ellenberger, T. (2000) DNA bending and a flip-out mechanism for base excision by the helix-hairpin-helix DNA glycosylase, Escherichia coli AlkA. EMBO J. 19, 758–766.

    PubMed  CAS  Google Scholar 

  101. Doherty, A. J., Serpell, L. C., and Ponting, C. P. (1996) The helix-hairpin-helix DNA-binding motif: a structural basis for non-sequence-specific recognition of DNA. Nucleic Acids Res. 24, 2488–2497.

    PubMed  CAS  Google Scholar 

  102. Labahn, J., Scharer, A., Long, A., Ezaz-Nikpay, K., Verdine, G. L., and Ellenberger, T. E. (1996) Structural basis for the excision repair of alkylation-damaged DNA. Cell 86, 321–329.

    PubMed  CAS  Google Scholar 

  103. Yamagata, Y., Kato, M., Odawara, K., Tokuno, Y., Nakashima, Y., Matsushima, N., et al. (1996) Three-dimensional structure of a DNA repair enzyme, 3-methyadenine DNA glycosylase II, from Escherichia coli. Cell 86, 311–319.

    PubMed  CAS  Google Scholar 

  104. Thayer, M. M., Ahern, H., Xing, D., Cunningham, R. P., and Tainer, J. A. (1995) Novel DNA binding motifs in the DNA repair enzyme endonuclease III crystal structure. EMBO J. 14, 4108–4120.

    PubMed  CAS  Google Scholar 

  105. Kuo, C.-F., McRee, D. E., Fisher, C. L., O'Haandley, S. F., Cunningham, R. P., and Tainer, J. A. (1992) Atomic structure of the DNA repair [4Fe-4S] enzyme endonuclease III. Science 258, 434–440.

    PubMed  CAS  Google Scholar 

  106. Volk, D. E., Thiviyanathan, V., House, P. G., Lloyd, R. S., and Gorenstein, D. G. (1999) 1H, 13C and 15N resonance assignments of the C-terminal domain of MutY: an adenine glycosylase active on G: A mismatches. J. Biomol. NMR 14, 385–386.

    PubMed  CAS  Google Scholar 

  107. Li, X. and Lu, A-L. (2000) Intact MutY and its catalytic domain differentially contact with A/8-oxoG-containing DNA. Nucleic Acids Res. 28, 4593–4603.

    PubMed  CAS  Google Scholar 

  108. Sugahara, M., Mikawa, T., Kumasaka, T., Yamamoto, M., Kato, R., Fukuyama, K., et al. (2000) Crystal structure of a repair enzyme of oxidatively damaged DNA, MutM (Fpg), from an extreme thermophile, Thermus thermophilus HB8. EMBO J. 19, 3857–3869.

    PubMed  CAS  Google Scholar 

  109. Zharkov, D. O., Reiger, R. A., Iden, C. R., and Grollman, A. P. (1997) NH2-terminal proline acts as a nucleophile in the glycosylase/APlyase reaction catalyzed by Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg) protein. J. Biol. Chem. 272, 5335–5341.

    PubMed  CAS  Google Scholar 

  110. Sun, B., Latham, K. A., Dodson, M. L., and Lloyd, R. S. (1995), Studies on the catalytic mechanism of five DNA glycosylases: probing for enzyme-DNA imino intermediates. J. Biol. Chem. 270, 19,501–19,508.

    CAS  Google Scholar 

  111. O'Connor, T. R. and Laval, J. (1989) Physical association of the 2,6-diamino-4-hydroxy-5N-formamidopyrimidine-DNA glycosylase of Escherichia coli and an activity nicking DNA at apurinic/apyrimidinic sites. Proc. Natl. Acad. Sci. USA 86, 5222–5226.

    PubMed  Google Scholar 

  112. Williams, S. D. and David, S. S. (1998) Evidence that MutY is a monofunctional glycosylase capable of forming a covalent Schiff base intermediate with substrate DNA. Nucleic Acids Res. 26, 5123–5133.

    PubMed  CAS  Google Scholar 

  113. Zharkov, D. O. and Grollman, A. P. (1998) MutY DNA glycosylase: base release and intermediate complex formation. Biochemistry 37, 12,384–12,394.

    CAS  Google Scholar 

  114. Au, K. G., Clark, S., Miller, J. H., and Modrich, P. (1989) Escherichia coli mutY gene encodes an adenine glycosylase active on G/A mispairs. Proc. Natl. Acad. Sci. USA 86, 8877–8881.

    PubMed  CAS  Google Scholar 

  115. Bulychev, N. V., Varaprasad, C. V., Dorman, G., Miller, J. H., Eisenberg, M., and Grollman, A. P. (1996) Substrate specificity of Escherichia coli MutY protein. Biochemistry 35, 13,147–13,156.

    CAS  Google Scholar 

  116. Michaels, M. L., Tchou, J., Grollman, A. P., and Miller, J. H. (1992) A repair system for 8-oxo-7,8-dihydrodeoxyguanine (8-hydroxyguanine). Biochemistry 31, 10,964–10,968.

    CAS  Google Scholar 

  117. Lu, A-L., Tsai-Wu, J.-J., and Cillo, J. (1995) DNA determinants and substrate specificities of Escherichia coli MutY. J. Biol. Chem. 270, 23,582–23,588.

    CAS  Google Scholar 

  118. Lu, A-L., Yuen, D. S., and Cillo, J. (1996) Catalytic mechanisms and DNA substrate recognition of Eschirichia coli MutY protein. J. Biol. Chem. 271, 24,138–24,143.

    CAS  Google Scholar 

  119. Wright, P. M., Yu, J., Cillo, J., and Lu, A.-L. (1999) The active site of the Escherichia coli MutY DNA adenine glycosylase. J. Biol. Chem. 274, 29,011–29,018.

    CAS  Google Scholar 

  120. Williams, S. D. and David, S. S. (1999) Formation of a Schiff base intermediate is not required for the adenine glycosylase activity of Escherichia coli Muty. Biochemistry 38, 15,417–15,424.

    CAS  Google Scholar 

  121. Zharkov, D. O., Gilboa, R., Yagil, I., Kycia, J. H., Gerchman, S. E., Shoham, G., et al. (2000) Role for lysine 142 in the excision of adenine from A: G mispairs by MutY DNA glycosylase of Escherichia coli. Biochemistry 39, 14,768–14,778.

    CAS  Google Scholar 

  122. Williams, S. D. and David, S. S. (2000) A single engineered point mutation in the adenine glycosylase MutY confers bifunctional glycosylase/AP lyase activity. Biochemistry 39, 10,098–10,109.

    CAS  Google Scholar 

  123. Mol, C. D., Parikh, S. S., Putnam, C. D., Lo, T. P., and Tainer, J. A. (1999) DNA repair mechanisms for the recognition and removal of damaged DNA bases. Annu. Rev. Biophys. Biomol. Struct. 28, 101–128.

    PubMed  CAS  Google Scholar 

  124. Castaing, B., Fourrey, J. L., Hervouet, N., Thomas, M., Boiteux, S., and Zelwer, C. (1999) AP site structural determinants for Fpg specific recognition. Nucleic Acids Res. 27, 608–615.

    PubMed  CAS  Google Scholar 

  125. Porello, S. L., Williams, S. D., Kuhn, H., Michaels, M. L., and David, S. S. (1996) Specific recognition of substrate analogs by the DNA mismatch repair enzyme MutY. J. Am. Chem. Soc. 118, 10,684–10,692.

    CAS  Google Scholar 

  126. Chmiel, N. H., Golinelli, M. P., Francis, A. W., and David, S. S. (2001) Efficient recognition of substrates and substrate analogs by the adenine glycosylase MutY requires the C-terminal domain. Nucleic Acids Res. 29, 553–564.

    PubMed  CAS  Google Scholar 

  127. Hosfield, D. J., Guan, Y., Haas, B. J., Cunningham, R. P., and Tainer, J. A. (1999) Structure of the DNA repair enzyme endonuclease IV and its DNA complex: doublenucleotide flipping at abasic sites and three-metal-ion catalysis. Cell 98, 397–408.

    PubMed  CAS  Google Scholar 

  128. Mol, C. D., Kuo, C. F., Thayer, M. M., Cunningham, R. P., and Tainer, J. A. (1999) Structure and function of the multifunctional DNA-repair enzyme exonuclease III. Nature 374, 381–386.

    Google Scholar 

  129. Mol, C. D., Hosfield, D. J., and Tainer, J. A. (2000) Abasic site recognition by two apurinic/apyrimidinic endonuclease families in DNA base excision repair: the 3′ ends justify the means. Mutat. Res. 460, 211–229.

    PubMed  CAS  Google Scholar 

  130. Dianov, G., Sedgwick, B., Daly, G., Olsson, M., Lovett, S., and Lindahl, T. (1994) Release of 5′-terminal deoxyribose-phosphate residues from incised abasic sites in DNA by the Escherichia coli RecJ protein. Nucleic Acids Res 22, 993–998.

    PubMed  CAS  Google Scholar 

  131. Sandigursky, M. and Franklin, W. A. (1992) DNA deoxyribophosphodiesterase of Escherichia coli is associated with exonuclease 1. Nucleic Acids Res. 20, 4699–4703.

    PubMed  CAS  Google Scholar 

  132. Piersen, C. E., McCullough, A. K., and Lloyd, R. S. (2000) AP lyases and dRPases: commonality of mechanism. Mutat. Res. 459, 43–53.

    PubMed  CAS  Google Scholar 

  133. Dianov, G. and Lindahl, T. (1994) Reconstitution of the DNA base excision-repair pathway. Curr. Biol. 4, 1069–1076.

    PubMed  CAS  Google Scholar 

  134. Dianov, G., Price, A., and Lindahl, T. (1992) Generation of single-nucleotide repair patches following excision of uracil residues from DNA. Mol. Cell Biol. 12, 1605–1612.

    PubMed  CAS  Google Scholar 

  135. Radicella, J. P., Clark, E. A., Chen, S., and Fox, M. S. (1993) Patch length of localized repair event: role of DNA polymerase I in mutY-dependent mismatch repair. J. Bacteriol. 175, 7732–7736.

    PubMed  CAS  Google Scholar 

  136. Tsai-Wu, J.-J. and Lu, A-L. (1994) Escherichia coli mutY-dependent mismatch repair involves DNA polymerase I and a short repair tract. Mol. Gen. Genet. 244, 444–450.

    PubMed  CAS  Google Scholar 

  137. Frosina, G., Cappelli, E., Fortini, P., and Dogliotti, E. (1999) In vitro base excision repair assay using mammalian cell extracts. Methods Mol. Biol. 113, 301–315.

    PubMed  CAS  Google Scholar 

  138. Krokan, H. E., Nilsen, H., Skorpen, F., Otterlei, M., and Slupphaug, G. (2000) Base excision repair of DNA in mammalian cells. FEBS Lett. 476, 73–77.

    PubMed  CAS  Google Scholar 

  139. Matsumoto, Y., Kim, K., Hurwitz, J., Gary, R., Levine, D. S., Tomkinson, A. E., et al. (1999) Reconstitution of proliferating cell nuclear antigen-dependent repair of apurinic/apyrimidinic sites with purified human proteins. J. Biol. Chem. 274, 33,703–33,708.

    CAS  Google Scholar 

  140. Srivastava, D. K., Berg, B. J., Prasad, R., Molina, J. T., Beard, W. A., Tomkinson, A. E., et al. (1998) Mammalian abasic site base excision repair. Identification of the reaction sequence and rate-determining steps. J. Biol. Chem. 273, 21,203–21,209.

    CAS  Google Scholar 

  141. Pascucci, B., Strucki, M., Jonsson, Z. O., Dogliotti, E., and Hubscher, U. (1999) Long patch base excision repair with purified human proteins: DNA ligase I as patch size mediator for DNA polymerases δ and ε. J. Biol. Chem. 274, 33,696–33,702.

    CAS  Google Scholar 

  142. DeMott, M. S., Zigman, S., and Bambara, R. A. (1998) Replication protein A stimulates long patch DNA base excision repair. J. Biol. Chem. 273, 27,492–27,498.

    CAS  Google Scholar 

  143. Dianov, G. L., Jensen, B. R., Kenny, M. K., and Bohr, V. A. (1999) Replication protein A stimulates proliferating cell nuclear antigen-dependent repari of abasic sites in DNA by human cell extracts. Biochemistry 38, 11,021–11,025.

    CAS  Google Scholar 

  144. Dianov, G. L., Prasad, R., Wilson, S. H., and Bohr, V. A. (1999) Role of DNA polymerase beta in the excision step of long patch mammalian base excision repair. J. Biol. Chem. 274, 13,741–13,743.

    CAS  Google Scholar 

  145. Parker, A., Gu, Y., Mahoney, W., Lee, S.-H., Singh, K. K., and Lu, A-L. (2001) Human homolog of the MutY protein (hMYH) physically interacts with protein involved in longpatch DNA base excision repair. J. Biol. Chem. 276, 5547–5555.

    PubMed  CAS  Google Scholar 

  146. Fortini, P., Parlanti, E., Sidorkina, O. M., Laval, J., and Dogliotti, E. (1999) The type of DNA glycosylase determines the base excision repair pathway in mammalian cells. J. Biol. Chem. 274, 15,230–15,236.

    CAS  Google Scholar 

  147. Bharati, S., Krokan, H. E., Kristiansen, L., Otterlei, M., and Slupphaug, G. (1998) Human mitochondrial uracil-DNA glycosylase prefrom (UNG1) is processed to two forms one of which is resistant to inhibition by AP sites. Nucleic Acids Res. 26, 4953–4959.

    PubMed  CAS  Google Scholar 

  148. Mol, C. D., Izumi, T., Mitra, S., and Tainer, J. A. (2000) DNA-bound structures and mutants reveal abasic DNA binding by APE1 and DNA repair coordination. Nature 403, 451–456.

    PubMed  CAS  Google Scholar 

  149. Gorman, M. A., Morera, S., Rothwell, D. G., de La, F. E., Mol, C. D., Tainer, J. A., et al. (1997) The crystal structure of the human DNA repair endonuclease HAP1 suggests the recognition of extra-helical deoxyribose at DNA abasic sites. EMBO J. 16, 6548–6558.

    PubMed  CAS  Google Scholar 

  150. Parikh, S. S., Mol, C. D., Slupphaug, G., Bharati, S., Krokan, H. E., and Tainer, J. A. (1998) Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA. EMBO J. 17, 5214–5226.

    PubMed  CAS  Google Scholar 

  151. Waters, T. R., Gallinari, P., Jiricny, J., and Swann, P. F. (1999) Human thymine DNA glycosylase binds to apurinic sites in DNA but is displaced by human apurinic endonuclease 1. J. Biol. Chem. 274, 67–74.

    PubMed  CAS  Google Scholar 

  152. Yang, H., Clendenin, W. M., Wong, D., Demple, B., Slupska, M. M., Chaing, J. H. and Miller, J. H. (2001) Enhanced activity of adenine-DNA glycosylase (Myh) by apurinic/apyrimidinic endonuclease (Ape1) in mammalian base excision repair of an A/GO mismatch. Nucleic Acids Res. 29, 743–752.

    PubMed  CAS  Google Scholar 

  153. Klungland, A., Hoss, M., Gunz, D., Constantinou, A., Clarkson, S. G., Doetsch, P. W., et al. (1999) Base excision repair of oxidative DNA damage activated by XPG protein. Mol. Cell 3, 33–42.

    PubMed  CAS  Google Scholar 

  154. Bennett, R. A., Wilson, D. M., III, Wong, D., and Demple, B. (1997) Interaction of human apurinic endonuclease and DNA polymerase beta in the base excision repair pathway. Proc. Natl. Acad. Sci. USA 94, 7166–7169.

    PubMed  CAS  Google Scholar 

  155. Krishna, T. S., Kong, X. P., Gary, S., Burgers, P. M., and Kuriyan, J. (1994) Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 79, 1233–1243.

    PubMed  CAS  Google Scholar 

  156. Kelman, Z. (1997) PCNA: structure, functions and interactions. Oncogene 14, 629–640.

    PubMed  CAS  Google Scholar 

  157. Warbrick, E. (1998) PCNA binding through a conserved motif. BioEssays 20, 195–199.

    PubMed  CAS  Google Scholar 

  158. Zhang, P., Mo, J. Y., Perez, A., Leon, A., Liu, L., Mazloum, N., et al. (1999) Direct interaction of proliferating cell nuclear antigen with the p125 catalytic subunit of mammalian DNA polymerase δ. J. Biol. Chem. 274, 26,647–26,653.

    CAS  Google Scholar 

  159. Tsurimoto, T. (1999) PCNA binding proteins. Front. Biosci. 4, D849-D858.

    PubMed  CAS  Google Scholar 

  160. Kelman, Z. and Hurwitz, J. (1998) Protein-PCNA interactions: a DNA-scanning mechanism? Trends Biochem. Sci. 23, 236–238.

    PubMed  CAS  Google Scholar 

  161. Mer, G., Bochkarev, A., Gupta, R., Bochkareva, E., Frappier, L., Ingles, C. J., et al. (2000) Structural basis for the recognition of DNA repair proteins UNG2, XPA, and RAD52 by replication factor RPA. Cell 103, 449–456.

    PubMed  CAS  Google Scholar 

  162. Nagelhus, T. A., Haug, T., Singh, K. K., Keshav, K. F., Skorpen, F., Otterlei, M., et al. (1997) A sequence in the N-terminal region of human uracil-DNA glycosylase with homology to XPA interacts with the C-terminal part of the 34-kDa subunit of replication protein A. J. Biol. Chem. 272, 6561–6566.

    PubMed  CAS  Google Scholar 

  163. Park, M. S., Ludwig, D. L., Stigger, E., and Lee, S. H. (1996) Physical interaction between human RAD52 and RPA is required for homologous recombination in mammalian cells. J. Biol. Chem. 271, 18,996–19,000.

    CAS  Google Scholar 

  164. Wold, M. S. (1997) Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu. Rev. Biochem. 66, 61–92.

    PubMed  CAS  Google Scholar 

  165. Biswas, E. E., Zhu, F. X., and Biswas, S. B. (1997) Stimulation of RTH1 nuclease of the yeast Saccharomyces cerevisiae by replication protein A. Biochemistry 36, 5955–5962.

    PubMed  CAS  Google Scholar 

  166. Prasad, R., Singhal, R. K., Srivastava, D. K., Molina, J. T., Tomkinson, A. E., and Wilson, S. H. (1996) Specific interaction of DNA polymerase beta and DNA ligase I in a multiprotein base excision repair complex from bovine testis. J. Biol. Chem. 271, 16,000–16,007.

    CAS  Google Scholar 

  167. Marintchev, A., Robertson, A., Dimitriadis, E. K., Prasad, R., Wilson, S. H., and Mullen, G. P. (2000) Domain specific interaction in the XRCC1-DNA polymerase beta complex. Nucleic Acids Res. 28, 2049–2059.

    PubMed  CAS  Google Scholar 

  168. Masson, M., Niedergang, C., Schreiber, V., Muller, S., Menissier-de Murcia, J., and de Murcia, G. (1998) XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol. Cell Biol. 18, 3563–3571.

    PubMed  CAS  Google Scholar 

  169. Levin, D. S., Bai, W., Yao, N., O'Donnell, M., and Tomkinson, A. E. (1997) An interaction between DNA ligase I and proliferating cell nuclear antigen: implications for Okazaki fragment synthesis and joining. Proc. Natl. Acad. Sci. USA 94, 12,863–12,868.

    CAS  Google Scholar 

  170. Montecucco, A., Rossi, R., Levin, D. S., Gary, R., Park, M. S., Motycka, T. A., et al. (1998) DNA ligase I is recruited to sites of DNA replication by an interaction with proliferating cell nuclear antigen: identification of a common targeting mechanism for the assembly of replication factories. EMBO J. 17, 3786–3795.

    PubMed  CAS  Google Scholar 

  171. Beard, W. A. and Wilson, S. H. (2000) Structural design of a eukaryotic DNA repair polymerase: DNA polymerase beta. Mutat. Res. 460, 231–244.

    PubMed  CAS  Google Scholar 

  172. Rice, P. A. (1999) Holding damaged DNA together. Nat. Struct. Biol. 6, 805–806.

    PubMed  CAS  Google Scholar 

  173. Wilson, S. H. and Kunkel, T. A. (2000) Passing the baton in base excision repair. Nat. Struct. Biol. 7, 176–178.

    PubMed  CAS  Google Scholar 

  174. Gowen, L. C., Avrutskaya, A. V., Latour, A. M., Koller, B. H., and Leadon, S. A. (1998) BRCA1 required for transcription-coupled repair of oxidative DNA damage. Science 281, 1009–1012.

    PubMed  CAS  Google Scholar 

  175. LePage, F., Kwoh, E. E., Avrutskaya, A., Gentil, A., Leadon, S. A., Sarasin, A., et al. (2000) Transcription-coupled repair of 8-oxoguanine: requirement for XPG, TFIIH, and CSB and implications for Cockayne syndrome. Cell 101, 159–171.

    CAS  Google Scholar 

  176. Le Page, F., Klungland, A., Barnes, D. E., Sarasin, A., and Boiteux, S. (2000) Transcription coupled repair of 8-oxoguanine in mirine cells: the OGG1 protein is required for repair in nontranscribed sequences but not in transcribed sequences. Proc. Natl. Acad. Sci. USA 97, 8397–8402.

    PubMed  Google Scholar 

  177. Thomas, D., Scot, A. D., Barbey, R., Padula, M., and Boiteux, S. (1997) Inactivation of OGG1 increases the incidence of G: C to T: A transversions in Saccharomyces cerevisiae: evidence for endogenous oxidative damage to DNA in eukaryotic cells. Mol. Gen. Genet. 254, 171–178.

    PubMed  CAS  Google Scholar 

  178. van der Kemp P. A., Thomas, D., Barbey, R., de Oliveira, R., and Boiteux, S. (1996) Cloning and expression in Escherichia coli of the Ogg1 gene of Saccharomyces cerevisiae, which codes for a DNA glycosylase that excises 7,8-dihydro-8-oxoguanine and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine. Proc. Natl. Acad. Sci. USA 93, 5197–5202.

    PubMed  Google Scholar 

  179. Chang, D.-Y., Gu, Y. and Lu, A-L. (2001) Fission yeast (Schizosaccharomyces pombe) cells defective in the MutY-homologous glycosylase activity have a mutator phenotype and are sensitive to hydrogen peroxide. Mol. Genet. Genom., in press.

  180. Ochs, K., Sobol, R. W., Wilson, S. H., and Kaina, B. (1999) Cells deficient in DNA polymerase beta are hypersensitive to alkylating agent-induced apoptosis and chromosomal breakage. Cancer Res. 59, 1544–1551.

    PubMed  CAS  Google Scholar 

  181. Sobol, R. W., Horton, J. K., Kuhn, R., Gu, H., Singhal, R. K., Prasad, R., et al. (1996) Requirement of mammalian DNA polymerasebeta in base-excision repair. Nature 379, 183–186.

    PubMed  CAS  Google Scholar 

  182. Tebbs, R. S., Flannery, M. L., Meneses, J. J., Hartmann, A., Tucker, J. D., Thompson, L. H., et al. (1999) Requirement for the Xrcc1 DNA base excision repair gene during early mouse development. Dev. Biol. 208, 513–529.

    PubMed  CAS  Google Scholar 

  183. Wilson, D. M., III and Thompson, L. H. (1997) Life without DNA repair. Proc. Natl. Acad. Sci. USA 94, 12,754–12,757.

    CAS  Google Scholar 

  184. Malins, D. C., Holmes, E. H., Polissar, N. L., and Gunselman, S. J. (1993) The etiology of breast cancer: characteristic alterations in hydroxyl radical-induced DNA base lesions during oncogenesis with potential for evaluating incidence risk. Cancer 71, 3036–3043.

    PubMed  CAS  Google Scholar 

  185. Olinski, R., Zastawny, T., Budzbon, J., Skokowski, J., Zegarski, W., and Dizdaroglu, M. (1992) DNA base modifications in chromatin of human cancerous tissues. FEBS Lett. 309, 193–198.

    PubMed  CAS  Google Scholar 

  186. Szatrowski, T. P. and Nathan, C. F. (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 51, 794–798.

    PubMed  CAS  Google Scholar 

  187. Hollstein, M., Sidransky, D., Vogelstein, B., and Harris, C. C. (1991) p53 mutations in human cancers. Science 253, 49–53.

    PubMed  CAS  Google Scholar 

  188. Mitsudomi, T., Viallet, J., Mulshine, J. L., Linnoila, R. I., Minna, J. D., and Gazdar, A. F. (1991) Mutations of ras genes distinguish a subset of non-small-cell lung cancer cell lines from small-cell lung cancer lines. Oncogene 6, 1353–1362.

    PubMed  CAS  Google Scholar 

  189. Takama, F., Kanuma, T., Wang D., Nishida, J. I., Nakabeppu, Y., Wake, N. et al. (2000) Mutation analysis of the hMTH1 gene in sporadic human ovarian cancer. Int. J. Oncol. 17, 467–471.

    PubMed  CAS  Google Scholar 

  190. Audebert, M., Chevillard, S., Levalois, C., Gyapay, G., Vieillefond, A., Klijanienko, J., et al. (2000) Alterations of the DNA repair gene OGG1 in human clear cell carcinomas of the kidney. Cancer Res. 60, 4740–4744.

    PubMed  CAS  Google Scholar 

  191. Klungland, A., Rosewell, I., Hollenbach, S., Larsen, E., Daly, G., Epe, B., et al. (1999) Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc. Natl. Acad. Sci. USA 96, 13,300–13,305.

    CAS  Google Scholar 

  192. Friedberg, E. C. and Meira, L. B. (2000) Database of mouse strains carrying targeted mutations in genes affecting cellular responses to DNA damage. Version 4. Mutat. Res. 459, 243–274.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.-Lien Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, AL., Li, X., Gu, Y. et al. Repair of oxidative DNA damage. Cell Biochem Biophys 35, 141–170 (2001). https://doi.org/10.1385/CBB:35:2:141

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:35:2:141

Index Entries

Navigation