Skip to main content
Log in

Regulation of dorso/ventral patterning in the drosophila embryo by multiple dorsal-interacting proteins

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The Rel family transcription factor, Dorsal, determines cell fate as a function of position along the dorsoventral axis of the Drosophila embryo. This process depends on interactions between Dorsal and a large number of additional proteins present in the early embryo. Cytoplasmic interactions regulate the nuclear uptake of Dorsal, resulting in the establishment of the Dorsal nuclear concentration gradient, which determines the dorsoventral polarity of the embryo. Nuclear protein-protein interactions then enable Dorsal to activate some target genes and to repress others, thereby promoting the division of the embryo into distinct developmental domains. Because of this broad array of regulatory interactions, Dorsal serves as an excellent paradigm for eukaryotic transcriptional regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Courey, A. J. and Huang, J. D. (1995) The establishment and interpretation of transcription factor gradients in the Drosophila embryo. Biochim Biophys. Acta 1261, 1–18.

    PubMed  Google Scholar 

  2. Neumann, C. and Cohen, S. (1997) Morphogens and pattern formation. Bioessays 19, 721–729.

    Article  PubMed  CAS  Google Scholar 

  3. Rushlow, C. A., Han, K., Manley, J. L., and Levine, M. (1989) The graded distribution of the dorsal morphogen is initiated by selective nuclear transport in Drosophila. Cell 59, 1165–1177.

    Article  PubMed  CAS  Google Scholar 

  4. Roth, S., Stein, D., and Nüsslein-Volhard, C. (1989) A gradient of nuclear localization of the dorsal protein determines dorsoventral pattern in the Drosophila embryo. Cell 59, 1189–1202.

    Article  PubMed  CAS  Google Scholar 

  5. Steward, R. (1989) Relocalization of the dorsal protein from the cytoplasm to the nucleus correlates with its function. Cell 59, 1179–1188.

    Article  PubMed  CAS  Google Scholar 

  6. Anderson, K. V. and Nüsslein-Volhard, C. (1984) Information for the dorsal—ventral pattern of the Drosophila embryo is stored as maternal mRNA. Nature 311, 223–227.

    Article  PubMed  CAS  Google Scholar 

  7. Morisato, D. and Anderson, K. V. (1995) Signaling pathways that establish the dorsalventral pattern of the Drosophila embryo. Ann Rev. Genet. 29, 371–399.

    Article  PubMed  CAS  Google Scholar 

  8. Sen, J., Goltz, J. S., Stevens, L., and Stein, D. (1998) Spatially restricted expression of pipe in the Drosophila egg chamber defines embryonic dorsal-ventral polarity. Cell 95, 471–481.

    Article  PubMed  CAS  Google Scholar 

  9. DeLotto, Y., and DeLotto, R. (1998) Proteolytic processing of the Drosophila Spätzle protein by easter generates a dimeric NGF-like molecule with ventralising activity. Mech. Dev. 72, 141–148.

    Article  PubMed  CAS  Google Scholar 

  10. Belvin, M. P. and Anderson, K. V. (1996) A conserved signaling pathway: the Drosophila tolldorsal pathway. Annu. Rev. Cell Dev. Biol. 12, 393–416.

    Article  PubMed  CAS  Google Scholar 

  11. Steward, R. (1987) Dorsal, an embryonic polarity gene in Drosophila, is homologous to the vertebrate proto-oncogene, c-rel. Science 238, 692–694.

    Article  PubMed  CAS  Google Scholar 

  12. Schneider, D. S., Hudson, K. L., Lin, T. Y., and Anderson, K. V. (1991) Dominant and recessive mutations define functional domains of Toll, a transmembrane protein required for dorsalventral polarity in the Drosophila embryo. Genes Dev. 5, 797–807.

    PubMed  CAS  Google Scholar 

  13. Medzhitov, R., Preston-Hurlburt, P., and Janeway, C. A., Jr. (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity [see comments]. Nature 388, 394–397.

    Article  PubMed  CAS  Google Scholar 

  14. Geisler, R., Bergmann, A., Hiromi, Y., and Nüsslein-Volhard, C. (1992) cactus, a gene involved in dorsoventral pattern formation of Drosophila, is related to the I kappa B gene family of vertebrates. Cell 71, 613–621.

    Article  PubMed  CAS  Google Scholar 

  15. Kidd, S. (1992) Characterization of the Drosophila cactus locus and analysis of interactions between cactus and dorsal proteins. Cell 71, 623–635.

    Article  PubMed  CAS  Google Scholar 

  16. Govind, S., Whalen, A. M., and Steward, R. (1992) In vivo self-association of the Drosophila rel-protein dorsal. Proc. Natl. Acad. Sci. USA 89, 7861–7865.

    Article  PubMed  CAS  Google Scholar 

  17. Isoda, K. and Nüsslein-Volhard, C. (1994) Disulfide cross-linking in crude embryonic lysates reveals three complexes of the Drosophila morphogen dorsal and its inhibitor cactus. Proc. Natl. Acad. Sci. USA 91, 5350–5354.

    Article  PubMed  CAS  Google Scholar 

  18. Bork, P. (1993) Hundreds of ankyrin-like repeats in functionally diverse proteins: mobile modules that cross phyla horizontally? Proteins 17, 363–374.

    Article  PubMed  CAS  Google Scholar 

  19. Tatei, K. and Levine, M. (1995) Specificity of Rel-inhibitor interactions in Drosophila embryos. Mol. Cell. Biol. 15, 3627–3634.

    PubMed  CAS  Google Scholar 

  20. Govind, S., Drier, E., Huang, L. H., and Steward, R. (1996) Regulated nuclear import of the Drosophila rel protein dorsal: structure-function analysis. Mol. Cell. Biol. 16, 1103–1114.

    PubMed  CAS  Google Scholar 

  21. Beg, A. A., Ruben, S. M., Scheinman, R. I., Haskill, S., Rosen, C. A., and Baldwin, A. S., Jr. (1992) I kappa B interacts with the nuclear localization sequences of the subunits of NF-kappa B: a mechanism for cytoplasmic retention. Genes Dev. 6, 1899–1913.

    PubMed  CAS  Google Scholar 

  22. Henkel, T., Zabel, U., van Zee, K., Muller, J. M., Fanning, E., and Baeuerle, P. A. (1992) Intramolecular masking of the nuclear location signal and dimerization domain in the precursor for the p50 NF-kappa B subunit. Cell 68, 1121–1133.

    Article  PubMed  CAS  Google Scholar 

  23. Reach, M., Galindo, R. L., Towb, P., Allen, J. L., Karin, M., and Wasserman, S. A. (1996) A gradient of cactus protein degradation establishes dorsoventral polarity in the Drosophila embryo. Dev. Biol. 180, 353–364.

    Article  PubMed  CAS  Google Scholar 

  24. Bergmann, A., Stein, D., Geisler, R., Hagenmaier, S., Schmid, B., Fernandez, N., Schnell, B., and Nüsslein-Volhard, C. (1996) A gradient of cytoplasmic Cactus degradation establishes the nuclear localization gradient of the dorsal morphogen in Drosophila. Mech. Dev. 60, 109–123.

    Article  PubMed  CAS  Google Scholar 

  25. Whalen, A. M. and Steward, R. (1993) Dissociation of the dorsal-cactus complex and phosphorylation of the dorsal protein correlate with the nuclear localization of dorsal. J. Cell. Biol. 123, 523–534.

    Article  PubMed  CAS  Google Scholar 

  26. Belvin, M. P., Jin, Y., and Anderson, K. V. (1995) Cactus protein degradation mediates Drosophila dorsal-ventral signaling. Genes Dev. 9, 783–793.

    PubMed  CAS  Google Scholar 

  27. Chen, Z., Hagler, J., Palombella, V. J., Melandri, F., Scherer, D., Ballard, D., and Maniatis, T. (1995) Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. Genes Dev. 9, 1586–1597.

    PubMed  CAS  Google Scholar 

  28. Régnier, C. H., Song, H. Y., Gao, X., Goeddel, D. V., Cao, Z., and Rothe, M. (1997) Identification and characterization of an IkappaB kinase. Cell 90, 373–383.

    Article  PubMed  Google Scholar 

  29. Huxford, T., Huang, D. B., Malek, S., and Ghosh, G. (1998) The crystal structure of the IkappaBalpha/NF-kappaB complex reveals mechanisms of NF-kappaB inactivation [see comments]. Cell 95, 759–770.

    Article  PubMed  CAS  Google Scholar 

  30. Gillespie, S. K. and Wasserman, S. A. (1994) Dorsal, a Drosophila Rel-like protein, is phosphorylated upon activation of the transmembrane protein Toll. Mol. Cell. Biol. 14, 3559–3568.

    PubMed  CAS  Google Scholar 

  31. Drier, E. A., Huang, L. H., and Steward, R. (1999) Nuclear import of the Drosophila Rel protein Dorsal is regulated by phosphorylation. Genes Dev. 13, 556–568.

    PubMed  CAS  Google Scholar 

  32. Briggs, L. J., Stein, D., Goltz, J., Corrigan, V. C., Efthymiadis, A., Hübner, S., and Jans, D. A. (1998) The cAMP-dependent protein kinase site (Ser312) enhances dorsal nuclear import through facilitating nuclear localization sequence/importin interaction. J. Biol. Chem. 273, 22,745–22,752.

    CAS  Google Scholar 

  33. Görlich, D. (1998) Transport into and out of the cell nucleus. EMBO J. 17, 2721–2727.

    Article  PubMed  Google Scholar 

  34. Grosshans, J., Bergmann, A., Haffter, P., and Nüsslein-Volhard, C. (1994) Activation of the kinase Pelle by Tube in the dorsoventral signal transduction pathway of Drosophila embryo [see comments]. Nature 372, 563–566.

    Article  PubMed  CAS  Google Scholar 

  35. Galindo, R. L., Edwards, D. N., Gillespie, S. K., and Wasserman, S. A. (1995) Interaction of the pelle kinase with the membrane-associated protein tube is required for transduction of the dorsoventral signal in Drosophila embryos. Development 121, 2209–2218.

    PubMed  CAS  Google Scholar 

  36. Towb, P., Galindo, R. L., and Wasserman, S. A. (1998) Recruitment of Tube and Pelle to signaling sites at the surface of the Drosophila embryo. Development 125, 2443–2450.

    PubMed  CAS  Google Scholar 

  37. Edwards, D. N., Towb, P., and Wasserman, S. A. (1997) An activity-dependent network of interactions links the Rel protein Dorsal with its cytoplasmic regulators. Development 124, 3855–3864.

    PubMed  CAS  Google Scholar 

  38. Yang, J. and Steward, R. (1997) A multimeric complex and the nuclear targeting of the Drosophila Rel protein Dorsal. Proc. Natl. Acad. Sci. USA 94, 14,524–14,529.

    CAS  Google Scholar 

  39. Letsou, A., Alexander, S., Orth, K., and Wasserman, S. A. (1991) Genetic and molecular characterization of tube, a Drosophila gene maternally required for embryonic dorsoventral polarity. Proc. Natl Acad. Sci. USA 88, 810–814.

    Article  PubMed  CAS  Google Scholar 

  40. Letsou, A., Alexander, S., and Wasserman, S. A. (1993) Domain mapping of tube, a protein essential for dorsoventral patterning of the Drosophila embryo. EMBO J. 12, 3449–3458.

    PubMed  CAS  Google Scholar 

  41. Shelton, C. A. and Wasserman, S. A. (1993) pelle encodes a protein kinase required to establish dorsoventral polarity in the Drosophila embryo. Cell 72, 515–525.

    Article  PubMed  CAS  Google Scholar 

  42. Stokoe, D., Macdonald, S. G., Cadwallader, K., Symons, M., and Hancock, J. F. (1994) Activation of Raf as a result of recruitment to the plasma membrane [see comments]. Science 264, 1463–1467.

    Article  PubMed  CAS  Google Scholar 

  43. Leevers, S. J., Paterson, H. F., and Marshall, C. J. (1994) Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 369, 411–414.

    Article  PubMed  CAS  Google Scholar 

  44. Kanakaraj, P., Schafer, P. H., Cavender, D. E., Wu, Y., Ngo, K., Grealish, P. F., Wadsworth, S. A., Peterson, P. A., Siekierka, J. J., Harris, C. A., and Fung-Leung, W. P. (1998) Interleukin (IL)-1 receptor-associated kinase (IRAK) requirement for optimal induction of multiple IL-1 signaling pathways and IL-6 production. J. Exp. Med. 187, 2073–2079.

    Article  PubMed  CAS  Google Scholar 

  45. Shen, B. and Manley, J. L. (1998) Phosphorylation modulates direct interactions between the Tool receptor, Pelle kinase and Tube. Development 125, 4719–4728.

    PubMed  CAS  Google Scholar 

  46. Norris, J. L. and Manley, J. L. (1995) Regulation of dorsal in cultured cells by Toll and tube: tube function involves a novel mechanism. Genes Dev. 9, 358–369.

    PubMed  CAS  Google Scholar 

  47. Rusch, J. and Levine, M. (1996) Threshold responses to the dorsal regulatory gradient and the subdivision of primary tissue territories in the Drosophila embryo. Curr. Opin. Genet. Devel. 6, 416–423.

    Article  CAS  Google Scholar 

  48. Ip, Y. T., Park, R. E., Kosman, D., Yazdanbakhsh, K. and Levine, M. (1992) dorsal-twist interactions establish snail expression in the presumptive mesoderm of the Drosophila embryo. Genes Dev. 6, 1518–1530.

    PubMed  CAS  Google Scholar 

  49. Kosman, D., Ip, Y. T., Levine, M., and Arora, K. (1991) Establishment of the mesoderm-neuroectoderm boundary in the Drosophila embryo. Science 254, 118–122.

    Article  PubMed  CAS  Google Scholar 

  50. Ip, Y. T., Park, R. E., Kosman, D., Bier, E. and Levine, M. (1992) The dorsal gradient morphogen regulates stripes of rhomboid expression in the presumptive neuroectoderm of the Drosophila embryo. Genes Dev. 6, 1728–1739.

    PubMed  CAS  Google Scholar 

  51. González-Crespo, S. and Levine, M. (1993) Interactions between dorsal and helix-loophelix proteins initiate the differentiation of the embryonic mesoderm and neuroectoderm in Drosophila. Genes Dev. 7, 1703–1713.

    PubMed  Google Scholar 

  52. Shirokawa, J. M. and Courey, A. J. (1997) Shirokawa, J. M., and A. J. Courey. 1997. A direct contact between the dorsal rel homology domain and Twist may mediate transcriptional synergy. Mol. Cell. Biol. 17, 3345–3355.

    PubMed  CAS  Google Scholar 

  53. Hahn, S. (1998) The role of TAFs in RNA polymerase II transcription. Cell 95, 579–582.

    Article  PubMed  CAS  Google Scholar 

  54. Verrijzer, C. P. and Tjian, R. (1996) TAFs mediate transcriptional activation and promoter selectivity [see comments]. Trends Biochem. Sci. 21, 338–342.

    Article  PubMed  CAS  Google Scholar 

  55. Zhou, J., Zwicker, J., Szymanski, P., Levine, M. and Tjian, R. (1998) TAFII mutations disrupt Dorsal activation in the Drosophila embryo. Proc. Natl Acad. Sci. USA 95, 13,483–13,488.

    CAS  Google Scholar 

  56. Goldman, P. S., Tran, V. K., and Goodman, R. H. (1997) The multifunctional role of the co-activator CBP in transcriptional regulation. Recent Prog. Horm. Res. 52, 103–119; discussion 119–120.

    PubMed  CAS  Google Scholar 

  57. Giles, R. H., Peters, D. J., and Breuning, M. H. (1998) Conjunction dysfunction: CBP/p300 in human disease. Trends Genet. 14, 178–183.

    Article  PubMed  CAS  Google Scholar 

  58. Hirose, S. (1998) Chromatin remodeling and transcription. J. Biochem. 124, 1060–1064.

    PubMed  CAS  Google Scholar 

  59. Luger, K. and Richmond, T. J. (1998) The histone tails of the nucleosome. Curr. Opin. Genet. Dev. 8, 140–146.

    Article  PubMed  CAS  Google Scholar 

  60. Akimaru, H., Hou, D. X. and Ishii, S. (1997) Drosophila CBP is required for dorsal-dependent twist gene expression. Nature Genet. 17, 211–214.

    Article  PubMed  CAS  Google Scholar 

  61. Perkins, N. D., Felzien, L. K., Betts, J. C., Leung, K., Beach, D. H., and Nabel, G. J. (1997) Regulation of NF-kappaB by cyclin-dependent kinases associated with the p300 coactivator. Science 275, 523–527.

    Article  PubMed  CAS  Google Scholar 

  62. Shi, Y., and Mello, C. (1998) A CBP/p300 homolog specifies multiple differentiation pathways in Caenorhabditis elegans. Genes Dev. 12, 943–955.

    PubMed  CAS  Google Scholar 

  63. Ray, R. P., Arora, K., Nüsslein-Volhard, C., and Gelbart, W. M. (1991) The control of cell fate along the dorsal-ventral axis of the Drosophila embryo. Development 113, 35–54.

    PubMed  CAS  Google Scholar 

  64. Pan, D. and Courey, A. J. (1992) The same dorsal binding site mediates both activation and repression in a context-dependent manner. EMBO J. 11, 1837–1842.

    PubMed  CAS  Google Scholar 

  65. Jiang, J., Rushlow, C. A., Zhou, Q., Small, S., and Levine, M. (1992) Individual dorsal morphogen binding sites mediate activation and repression in the Drosophila embryo. EMBO J. 11, 3147–3154.

    PubMed  CAS  Google Scholar 

  66. Huang, J. D., Dubnicoff, T., Liaw, G. J., Bai, Y., Valentine, S. A., Shirokawa, J. M., Lengyel, J. A., and Courey, A. J. (1995) Binding sites for transcription factor NTF-1/Elf-1 contribute to the ventral repression of decapentaplegic. Genes Dev. 9, 3177–3189.

    PubMed  CAS  Google Scholar 

  67. Jiang, J., Cai, H., Zhou, Q., and Levine, M. (1993) Conversion of a dorsal-dependent silencer into an enhancer: evidence for dorsal corepressors. EMBO J. 12, 3201–3209.

    PubMed  CAS  Google Scholar 

  68. Kirov, N., Zhelnin, L., Shah, J., and Rushlow, C. (1993) Conversion of a silencer into an enhancer: evidence for a co-repressor in dorsal-mediated repression in Drosophila. EMBO J. 12, 3193–3199.

    PubMed  CAS  Google Scholar 

  69. Dubnicoff, T., Valentine, S. A., Chen, G., Shi, T., Lengyel, J. A., Paroush, Z., and Courey, A. J. (1997) Conversion of dorsal from an activator to a repressor by the global corepressor Groucho. Genes Dev. 11, 2952–2957.

    PubMed  CAS  Google Scholar 

  70. Valentine, S. A., Chen, G., Shandala, T., Fernandez, J., Mische, S., Saint, R., and Courey, A. J. (1998) Dorsal-mediated repression requires the formation of a multiprotein repression complex at the ventral silencer. Mol. Cell. Biol. 18, 6584–6594.

    PubMed  CAS  Google Scholar 

  71. Fisher, A. L. and Caudy, M. (1998) Groucho proteins: transcriptional corepressors for specific subsets of DNA-binding transcription factors in vertebrates and invertebrates. Genes Dev. 12, 1931–1940.

    PubMed  CAS  Google Scholar 

  72. Neer, E. J., Schmidt, C. J., Nambudripad, R., and Smith, T. F. (1994) The ancient regulatory-protein family of WD-repeat proteins. Nature 371, 297–300.

    Article  PubMed  CAS  Google Scholar 

  73. Wall, M. A., Coleman, D. E., Lee, E., Iniguez-Lluhi, J. A., Posner, B. A., Gilman, A. G., and Sprang, S. R. (1995) The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2. Cell 83, 1047–1058.

    Article  PubMed  CAS  Google Scholar 

  74. Sondek, J., Bohm, A., Lambright, D. G., Hamm, H. E., and Sigler, P. B. (1996) Crystal structure of a G-protein beta gamma dimer at 2.1A resolution [see comments] Nature 379, 369–374.

    Article  PubMed  CAS  Google Scholar 

  75. Chen, G., Nguyen, P. H. and Courey, A. J. (1998) A role for Groucho tetramerization in transcriptional repression. Mol. Cell. Biol. 18, 7259–7268.

    PubMed  CAS  Google Scholar 

  76. Palaparti, A., Baratz, A., and Stifani, S. (1997) The Groucho/transducin-like enhancer of split transcriptional repressors interact with the genetically defined amino-terminal silencing domain of histone H3. J. Biol. Chem. 272, 26,604–26,610.

    Article  CAS  Google Scholar 

  77. Chen, G., Fernandez, J., Mische, S., and Courey, A. J. (1999) A functional interaction between the histone deacetylase Rpd3 and the co-repressor Groucho in Drosophila development. Genes Dev., 13, 2218–2230.

    Article  PubMed  CAS  Google Scholar 

  78. Edmondson, D. G., Smith, M. M., and Roth, S. Y. (1996) Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4. Genes Dev. 10, 1247–1269.

    PubMed  CAS  Google Scholar 

  79. Steward, R., Zusman, S. B., Huang, L. H. and Schedl, P. (1988) The dorsal protein is distributed in a concentration gradient in early embryos. Cell. 55, 487–495.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert J. Courey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flores-saaib, R.D., Courey, A.J. Regulation of dorso/ventral patterning in the drosophila embryo by multiple dorsal-interacting proteins. Cell Biochem Biophys 33, 1–17 (2000). https://doi.org/10.1385/CBB:33:1:1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:33:1:1

Index Entries

Navigation