Skip to main content
Log in

Selenium protects cerebral ischemia in rat brain mitochondria

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Normal cellular metabolism produces oxidants that are neutralized by the cells' antioxidant enzymes and antioxidants taken from outside. An imbalance between oxidant and antioxidant has been postulated to lead to the neurodegeneration in the ischemic condition. In this study, we have demonstrated the prevention or slowdown of neuronal injury in middle cerebral artery occlusion (MCAO) by sodium selenite. Rats were pretreated with 0.05, 0.1, and 0.2 mg/kg body wt of sodium selenite for 7 d. The rats of group I (sham) and group II (ischemia) were pretreated with physiological saline for 7 d. On d 8, MCAO was induced for 2 h in, the right side of brain of group II, III, IV, and V rats. Brains were dissect out after 22 h of reperfusion and washed with chilled physiological saline. The right cerebral hemisphere was used for the preparation of mitochondria. The activity of superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, and monoamine oxidase (MAO-A and MAO-B) was depleted significantly; conversely, the activity of poly(ADP-ribosyl) polymerase was elevated significantly as compared to the sham, and the pretreatment of the animals with different doses of sodium selenite has protected the activity of these enzymes significantly. The content of glutathione was decreased significantly, whereas the level of lipid peroxidation was increased significantly in the mitochondria of MCAO as compared to the sham group, and pretreatment with different doses of sodium selenite has protected their levels significantly as compared to the MCAO group. It is concluded that selenium, which is an essential part of our diet, might be helpful in protection against neurodegeneration in cerebral ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Salim, M. Ahmad, K. S. Zafar, et al., Protective effect of nardostachys jatamansi in rat cerebral ischemia, Pharmacol. Biochem. Behav. 74, 481–486 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. Y. Chagnac-Amitai and B. W. Connors, Horizontal spread of synchronized activity in neocortex by GABA-mediated inhibition, J Eur. Physiol. 61, 747–758 (1989).

    CAS  Google Scholar 

  3. M. Davis, T. Whitely, D. M. Turnbull, et al., Selective impairment of mitochondrial respiratory chain activity during aging and ischemic brain damage, Acta Neurochir. (Wien) 70(Suppl.), 56–58 (1997).

    CAS  Google Scholar 

  4. E Fosslien, Mitochondrial medicine—molecular pathology of defective oxidative phosphorylation, Anal. Clin. Lab. Sci. 31, 25–67 (2001).

    CAS  Google Scholar 

  5. M. I. Eliasson, K. Sampe, A. S. Mandir, et al., Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia, Nature Med. 3, 1089 (1997).

    Article  PubMed  CAS  Google Scholar 

  6. J. Zhang, V. L. Dawson, T. M. Dawson, et al., Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity, Science 263, 687 (1994).

    Article  PubMed  CAS  Google Scholar 

  7. L. Virag, A. L. Salzman, and C. Szaboc, Poly(ADp-ribose) synthetase activation mediates mitochondrial injury during oxidant induced cell death, J. Immunol. 161, 3753–3759 (1998).

    PubMed  CAS  Google Scholar 

  8. I. Bowes, C. Michelle, J. McDonald, et al., Inhibitors of poly(ADP-ribose) synthetase protects rat cardiomyocytes against oxidant stress, Cardiovasc. Res. 41, 126–134 (1999).

    Article  PubMed  CAS  Google Scholar 

  9. P. H. Wang and J. L. Zweir, Measurement of nitric oxide peroxinitrite generation in post-ischemic heart. Evidences peroxinitrite-mediated reperfusion injury, J. Biol. Chem. 271, 29,223–29,230 (1996).

    CAS  Google Scholar 

  10. T. Lindahl, M. S. Salob, G. C. Poirier, et al., Post translational modification of poly(ADP-ribose) polymerase induced by DNA strand breaks, Trends Biochem. Sci. 20, 405–411 (1995).

    Article  PubMed  CAS  Google Scholar 

  11. M. K. Jacobson and E. L. Jacobson, Discovering new ADP-ribose polymer cycles: protecting the genome and more, Trends Biochem. Sci. 11, 415–417 (1999).

    Article  Google Scholar 

  12. R. Halmosi, Z. Berente, E. Osz, et al., Effect of poly(ADP-ribose) polymerase inhibitors on the ischemia-reperfusion-induced oxidative cell damage and mitochondrial metabolism in Langendorff heart perfusion system, Mol. Pharmacol. 59, 1497–1505 (2001).

    PubMed  CAS  Google Scholar 

  13. C. Thiemermann, J. Bowes, P. Fiona, et al., Inhibition of poly(ADP-ribose) synthetase reduces ischemia-reperfusion injury in the heart and skeletal muscle, Proc. Natl. Acad. Sci. USA 94, 679–683 (1997).

    Article  PubMed  CAS  Google Scholar 

  14. D. A. Carson, S. Set, B. Wasson, et al., DNA strand break, NAD metabolism and programmed cell death, Exp. Cell Res. 164, 273–281 (1986).

    Article  PubMed  CAS  Google Scholar 

  15. I. U. Schraufstattar, P. A. Hyslop, D. B. Hinshow, et al., Hydrogen peroxide induced injury and its prevention by inhibition of poly(ADP-ribose) polymerase, Proc. Natl. Acad. Sci. USA 83, 4908–4912 (1986).

    Article  Google Scholar 

  16. Keelan, T. E. Bates, and J. B. Clark, Heightened resistance of the neonatal brain to ischemia-reperfusion involves a lack of mitochondrial damage in the nerve terminal, Brain Res. 821, 124–133 (1999).

    Article  PubMed  CAS  Google Scholar 

  17. N. A. Berger, Cellular response to DNA damage the role of poly(ADP-ribose), Radiat. Res. 101, 4–15 (1985).

    Article  PubMed  CAS  Google Scholar 

  18. M. A. Bowe and J. V. Nadler, Polyamines antagonize N-methyl-d-aspartate-evoked depolarization, but reduce Mg2+ block, Eur. J. Pharmacol. 278, 5565 (1995).

    Article  Google Scholar 

  19. M. J. Gutnick, B. W. Connors, and D. A. Prince, Mechanisms of neocortical epileptogenesis in vitro, J. Neurophysiol. 48, 1321–1335 (1982).

    PubMed  CAS  Google Scholar 

  20. C. J. Kilpatrick, S. M. Davis, B. M. Tress, et al., Epilectic seizures of acute stroke, Arch. Neurol. 47, 157–160 (1990).

    PubMed  CAS  Google Scholar 

  21. V. L. Dawson, T. M. Dawson, E. D. Lonon, et al., Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures, Proc. Natl. Acad. Sci. USA 88, 6368–6371 (1991).

    Article  PubMed  CAS  Google Scholar 

  22. J. P. Nowicki, D. Duwal, H. Poignet, et al., Nitric oxide mediates neuronal death after focal cerebral ischemia in mouse, Eur. J. Pharmacol. 204, 339–340 (1991).

    Article  PubMed  CAS  Google Scholar 

  23. B. Moghaddam, Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia, J. Neurochem. 60, 1650–1657 (1993).

    Article  PubMed  CAS  Google Scholar 

  24. L. M. Jose, M. R. Olivenza, A. M. Mara, et al., Glutathion depletion, lipid peroxidation and mitochondrial disfunction are induced by chronic stress on rat brain, Neuropsychopharmacology 24, 420–429 (2001).

    Article  Google Scholar 

  25. K. Abe, N. Hyashi, and H. Terada, Effect of endogenous nitric oxide on energy metabolism of rat heart mitochondria during ischemia and reperfusion, Free Radical Biol. Med. 26, 379–387 (1999).

    Article  CAS  Google Scholar 

  26. K. L. Almeida, T. E. Allen, Bates, et al., Effect of reperfusion following cercberal ischemia on the activity of mitochondrial respiratory chain in the gerbil brain, J. Neurochem. 65, 1698–1703 (1995).

    Article  PubMed  CAS  Google Scholar 

  27. C. Bowling and M. F. Beal, Bioenergetics and oxidative stress in neurodegenerative diseases, Life. Sci. 56, 1157–1171 (1995).

    Article  Google Scholar 

  28. D. J. O'Donovan and C. J. Fernandes, Mitochondrial glutathion and oxidative stress: implications for pulmonary oxygen toxicity in premature infants, Mol. Genet. Metab. 71, 325–328 (2000).

    Article  CAS  Google Scholar 

  29. K. S. Zafar, A. Siddiqui, I. Syeed, et al., Dose dependent protective effect of selenium in rat model of Parkinson's disease: neurobehavioral and neurochemical evidences, J. Neurochem. 84, 438–446 (2003).

    Article  PubMed  CAS  Google Scholar 

  30. J. T. Rotruck, A. L. Pope, H. E. Ganther, et al., Selenium: biochemical role as a componen of glutathione peroxidase, Science 233, 539–544 (1973).

    Google Scholar 

  31. N. Q. Li, P. S. Reddy, K. Thyagaraju, et al., Elevation of rat liver mRNA for selenium-dependent glutathione peroxidase by selenium deficiency, J. Biol. Chem. 265, 108–113 (1990).

    PubMed  CAS  Google Scholar 

  32. V. G., Desai, D. Casciano, R. J. Feuers, et al., Activity profile of glutathione-dependent enzymes and respiratory chain complexes in rats supplemented with antioxidants and treated with carcinogens, Arch. Biochem. Biophys. 394, 255–264 (2001).

    Article  PubMed  CAS  Google Scholar 

  33. F. Islam, S. Zia, I. Sayeed, et al., Selenium-induced alteration of lipids, lipid peroxidation, and thiol group in circadian rhythm centers of rat, Biol. Trace Element Res. 90, 203–214 (2002).

    Article  CAS  Google Scholar 

  34. P. A. Wolf, W. B. Kannel, and J. Verter, Current status of risk factors for stroke, Neurol. Clin. North Am. 1, 317–318 (1983).

    CAS  Google Scholar 

  35. E. D. Hall, P. K. Andrus, J. A. Oostveen, et al., Neuroprotective effects of the dopamine D2/D3 against pramipexole against postischemic or methamphetamine-induced degeneration of nigostriatal neurons, Brain Res. 742, 80–88 (1996).

    Article  PubMed  CAS  Google Scholar 

  36. S. G. Simonson, J. Zhang, A. T. Canada, et al., Hydrogen peroxide production by monoamine oxidase during ischemia-reperfusion in the rat brain, Cereb. Blood Flow Metab. 13, 125–134 (1993).

    CAS  Google Scholar 

  37. M. Kozuka and N. Iwata, Changes in levels of monoamines and their metabolites in incompletely ischemic brains of spontaneously hypertensive rats, Neurochem. Res. 20, 1429–1435 (1995).

    Article  PubMed  CAS  Google Scholar 

  38. T. Tadano, A. Yonezawa, K. Oyama, et al., Effect of transient global ischemia and a monoamine oxidase inhibitor ifenprodil on rat brain monoamine metabolism, J. Prog. Brain Res. 106, 173–180 (1995).

    Article  CAS  Google Scholar 

  39. The Parkinson Study Group, Effect of deprenyl on the progression of disability in early Parkinson's disease, N. Engl. J. Med. 321, 1364–1371 (1989).

    Article  Google Scholar 

  40. S. Stvolinsky, M. Kukley, D. Dobrota, et al., Carnosine protects rats under global ischemia, Brain Res Bull. 53, 445–448 (2000).

    Article  PubMed  CAS  Google Scholar 

  41. T. Suzuki, N. Akaike, K. Ueno, et al., MAO inhibitors, clorgyline and lazabemide, prevent hydroxyl radical generation caused by brain ischemia/reperfusion in mice, Pharmacology 50, 357–362 (1995).

    PubMed  CAS  Google Scholar 

  42. W. Zhong and T. D. Oberley, Redox-mediated effects of selenium on apoptosis and cell cycle in the LNCap human prostate cancer cell line, Cancer Res. 61, 7071–7078 (2001).

    PubMed  CAS  Google Scholar 

  43. E. Z. Longa, P. R. Weinstein, S. Carlson, et al., Reversible middle cerebral artery occlusion without craniotomy in rats, Stroke. 20, 84–91 (1989).

    PubMed  CAS  Google Scholar 

  44. A. Nagy, and A. V. Delgado-Escueta, Rapid preparation of synaptosomes from mammalion brain using nontoxic isoosmotic gradient material (percol), J. Neurochem. 43, 1114–1123 (1984).

    Article  PubMed  CAS  Google Scholar 

  45. D. J. Jollow, J. R. Mitchell, N. Zampagline, et al., Bromobenzene induced liver necrosis: protective role of glutathione and evidence for 3,4-bromobenzene as the hepatic metabolite, Pharmacology 11, 151–169 (1974).

    Article  PubMed  CAS  Google Scholar 

  46. J. Mohandas, J. J. Marshall, G. G. Duggins, et al., Differential distribution of glutathion and glutathione related enzymes in rabit kidney: possible implications in analgesic neuropathy, Cancer Res. 44, 5086–5091 (1984).

    PubMed  CAS  Google Scholar 

  47. W. H. Habig, M. Pabst, and W. B. Jakoby, Glutathion-S-transferase: the first enzymatic step in mercapturic acid formation, J. Biol. Chem., 249, 7130–7139 (1974).

    PubMed  CAS  Google Scholar 

  48. M. Stevens, I. Obrosova, X. Cao, et al., Effects of DL-alpha-lipidic acid on peripheral nerve canduction, blood flow, energy metabolism and oxidative stress in experimental diabetic neuropathy, Diabetes 49, 1006–1015 (2000).

    Article  PubMed  CAS  Google Scholar 

  49. A. Claiborne, Catalase activity, in CRC Handbook of Methods for Oxygen Radical Research, R. A. Greenwold, ed., CRC, Boca Raton, FL, pp. 283–284 (1985).

    Google Scholar 

  50. H. C. Utley, F. Bernheim, and P. Hochslein, Effect of sulfhydryl reagent on peroxidation in micrisome, Arch. Biochem. Biophys. 260, 521–531 (1967).

    Google Scholar 

  51. M. Thakkar and B. N. Mallick, Effect of rapid eye movement sleep deprivation on rat brain monoamine oxidases, Neuroscience 55, 677–683 (1993).

    Article  PubMed  CAS  Google Scholar 

  52. A. Masmoudi, F. Islam, and P. Mandel, ADP-ribosylation of highly purified rat brain mitochondria, J. Neurochem. 51, 188–193 (1988).

    Article  PubMed  CAS  Google Scholar 

  53. B. P. Adlard, S. W. DeSouza, and S. Moon, The effect of age, grouth, retardation and asphyxia on ascorbic acid concentrations in developing brain, J. Neurochem. 21, 877–881 (1973).

    Article  PubMed  CAS  Google Scholar 

  54. I. Fridovich, The biology of oxygen radicals, Science 201, 875–880 (1978).

    Article  PubMed  CAS  Google Scholar 

  55. R. A. Floyd and J. M. Carney, Free radical damage to protein and DNA; mechanism involved and relevant observations on brain undergoing oxidative stress, Ann. Neurol. 32(Suppl.), S22-S27 (1992).

    Article  PubMed  CAS  Google Scholar 

  56. B. Halliwell, Reactive oxygen species and the central nervous system, J. Neurochem. 59, 1609–1623 (1992).

    Article  PubMed  CAS  Google Scholar 

  57. H. S. Park, S. H., Hoh, Y. Kim, et al., Selenite negatively regulates caspase-3 through a redox mechanism, J. Biol. Chem. 275(12), 8487–8491 (2000).

    Article  PubMed  CAS  Google Scholar 

  58. Y. Matsui and Y. Kumage, Monoamine oxidase inhibitors prevent strital neuronal necrosis induced by transient forebrain ischemia, Neurosci. Lett. 126, 175–178 (1991).

    Article  PubMed  CAS  Google Scholar 

  59. S. Z. Imam, G. D. Newport, F. Islam, et al., Selenium and antioxidant, protects against methamphatmins-induced dopaminergic neurotoxicity, Brain Res. 818, 575–578 (1999).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ansari, M.A., Ahmad, A.S., Ahmad, M. et al. Selenium protects cerebral ischemia in rat brain mitochondria. Biol Trace Elem Res 101, 73–86 (2004). https://doi.org/10.1385/BTER:101:1:73

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:101:1:73

Index Entries

Navigation