Skip to main content
Log in

Comparison of the cytotoxicity, cellular uptake, and DNA-protein crosslinks induced by potassium chromate in lymphoblast cell lines derived from three different individuals

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

We are trying to understand individual differences in susceptibility to chromate toxicity by comparing three different lymphoblastic cell lines derived from three different individuals. We have compared the uptake of CrO 2−4 , the release of LDH from cells, the proliferation ability of the cells, and the DNA-protein crosslinks in these lymphoblastic cell lines exposed to chromate. We report here that one lymphoblastic cell line, GM0922B, appears to be considerably less sensitive than the other two cells lines to the cytotoxic effects of hexavalent chromium. The diminished sensitivity is almost twofold and can be accounted for by the decreased uptake of hexavalent chromium, which results in less lactate dehydrogenase release, and greater tolerance to chromate inhibition of cell proliferation and less DNA-protein crosslinking. This lower uptake of chromate combined with interindividual differences in extracellular Cr(VI) reducing capacity are probably the two most important determinants of genetic susceptibility to chromate toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International Agency for Research on Cancer. IARC Monographs on the Evaluation of the Carciogenic Risk of Chemicals to Humans: Chromium, Nickel and Welding. IARC, Lyon, pp. 1–214 (1990).

    Google Scholar 

  2. M. D. Cohen, B. Kargacin, C. B. Klein, and M. Costa, Mechanisms of chromium carcinogenicity and toxicity, Crit. Rev. Toxicol. 23, 255–281 (1993).

    PubMed  CAS  Google Scholar 

  3. M. Costa, Toxicity and carcinogenicity of Cr(VI) in animal models and humans, Crit. Rev. Toxicol. 27, 431–442 (1997).

    Article  PubMed  CAS  Google Scholar 

  4. S. Langer, One hundred years of chromium and cancer: a review of epidemiological evidence and selected case reports, Am. J. Ind. Med. 17, 189–215 (1990).

    Article  Google Scholar 

  5. T. Norseth, The carcinogenicity of chromium and its salts, Br. J. Ind. Med. 43, 649–651 (1986).

    PubMed  CAS  Google Scholar 

  6. P. Arslan, M. Beltrame, and A. Tomasi, Intracellular chromium reduction, Biochim. Biophys. Acta 931, 10–15 (1987).

    Article  PubMed  CAS  Google Scholar 

  7. K. W. Jennette, The role of metals in carcinogenesis: biochemistry and metabolism, Environ. Health Perspect. 40, 233–252 (1981).

    Article  PubMed  CAS  Google Scholar 

  8. A. G. Levis and V. Bianchi, Mutagenic and cytogenetic effect of chromium compounds, in Biological and Environmental Aspects of Chromium, S. Langard, ed., Elsevier Biomedicals, Amsterdam, pp. 177–208 (1982).

    Google Scholar 

  9. S. De Flora and K. E. Wetterhahn, Mechanisms of chromium metabolism and genotoxicity, Life Chem. Rep. 7, 169–244 (1989).

    Google Scholar 

  10. S. De Flora, M. Bagnasco, D. Serra, and P. Zanacchi, P. Genotoxicity of chromium compounds. A review, Mutat. Res. 238, 99–172 (1990).

    PubMed  Google Scholar 

  11. M. Sugiyama, X. W. Wang, and M. Costa, Comparison of DNA lesions and cytotoxicity induced by calcium chromate in human, mouse, and hamster cell lines, Cancer Res. 46, 4547–4551 (1986).

    PubMed  CAS  Google Scholar 

  12. M. Sugiyama, S. R. Patierno, O. Cantoni, and M. Costa, Characterization of DNA lesions induced by CaCrO4 in synchronous and asynchronous cultured mammalian cells, Mol. Pharmacol. 29, 606–613 (1986).

    PubMed  CAS  Google Scholar 

  13. Z. Elisa, O. Poirot, O. Schneider, M. C. Daniere, F. Terzett, J. D. Guedenet, et al., Cellular uptake, cytotoxic and mutagenic effects of insoluble chromic oxide in V79 Chinese hamster cells, Mutat. Res. 169, 159–170 (1986).

    Article  Google Scholar 

  14. B. L. Finley, B. D. Kerger, M. W. Katona, M. L. Gargas, G. C. Corbett, and D. J. Paustenbach, Human ingestion of chromium(VI) in drinking water: pharmacokinetics following repeated exposure, Toxicol. Appl. Pharmacol. 142, 151–159 (1997).

    Article  PubMed  CAS  Google Scholar 

  15. B. D. Kerger, B. L. Finley, G. E. Corbett, D. G. Dodge, and D. J. Paustenbach, Ingestion of chromium(VI) in drinking water by human volunteers: absorption, distribution, and excretion of single and repeated doses, J. Toxicol. Environ. Health 50, 67–95 (1997).

    Article  PubMed  CAS  Google Scholar 

  16. M. J. Tsapakos, T. H. Hamptom, and K. E. Wetterhahn, Chromium (VI)-induced DNA lesions and chromium distribution in rat kidney, liver, and lung, Cancer Res. 43, 5662–5667 (1983).

    PubMed  CAS  Google Scholar 

  17. F. N. Henshaw, M. C. Little, D. J. Gawkrodger, et al., Keratinocytes cultured form normal adult skin show donor variability in their sensitivity to chromium, Br. J. Dermatol. 136, 455 (1997) (abstract).

    Google Scholar 

  18. F. N. Henshaw, B. W. Morris, and S. Mac Neil, Differentiation of normal human keratinocytes influences hexavalent chromium uptake and distribution and the ability of cells to withstand Cr(VI) cytotoxicity, Br. J. Dermatol. 141, 211–217 (1999).

    Article  PubMed  CAS  Google Scholar 

  19. G. Warren, P. Schultz, D. Bancroft, K. Bennett, E. H. Abbot, and S. Rogers, Mutagenicity of a series of hexacoordinate chromium (III) compounds, Mutat. Res. 90, 111–118 (1981).

    Article  PubMed  CAS  Google Scholar 

  20. J. Xu, G. J. Bubley, B. Detrick, L. J. Blankenship, and S. R. Patierno, Chromium(VI) treatment of normal human lung cells results in guanine-specific DNA polymerase arrest, DNA-DNA crosslinks and S-phaseblockade of cell cycle, Carcinogensis 17, 1511–1517 (1996).

    Article  CAS  Google Scholar 

  21. A. Zhitkovich, A. Lukanova, T. Popov, E. Taioli, H. Cohen, and M. Costa, DNA-protein crosslinks in peripheral lymphocytes of individuals exposed to hexavalent chromium compounds, Biomarkers 1, 86–93 (1996).

    CAS  Google Scholar 

  22. M. Costa, A. Zhitkovich, M. Harris, D. Paustenbach, and M. Gargas, DNA-protein crosslinks produced by carious chemicals in culture human lymphoma cells, J. Toxicol. Environ. Health 50, 433–449 (1997).

    Article  PubMed  CAS  Google Scholar 

  23. A. Zhitkovich and M. Costa, A simple, sensitive assay to detect DNA-protein-crosslinks in intact cells and in vivo, Carcinogenesis 13, 1485–1489 (1992).

    Article  PubMed  CAS  Google Scholar 

  24. A. Zhitkovich, V. Voitkun, and M. Costa, Formation of amino-acid-DNA complex by trivalent chromium in vitro: importance of trivalent chromium and the phosphate group, Biochemistry 35, 7275–7282 (1996).

    Article  PubMed  CAS  Google Scholar 

  25. T. P. Coogan, K. S. Squibb, J. Motz, P. L. Kinney, and M. Costa, Distribution of chromium within cells of the blood, Toxicol. Appl. Pharmacol. 108, 157–166 (1991).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, M., Kluz, T., Salnikow, K. et al. Comparison of the cytotoxicity, cellular uptake, and DNA-protein crosslinks induced by potassium chromate in lymphoblast cell lines derived from three different individuals. Biol Trace Elem Res 86, 11–22 (2002). https://doi.org/10.1385/BTER:86:1:11

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:86:1:11

Index Entries

Navigation