Skip to main content
Log in

Interaction mechanism between Cd2+ ions and DNA from the kidney of the silver crucian carp

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Cadmium is one of the most toxic heavy metals and is known to accumulate in freshwater food chains. The underlying mechanism for its genotoxicity has not been investigated for any freshwater fish. It has, however, been suggested that cadmium-induced carcinogenesis might involve either direct or indirect interaction of Cd2+ with DNA. The interaction between Cd2+ and DNA from the kidney of the silver crucian carp (Carassius auratus gibelio) in vitro and in vivo is investigated by spectrophotometric methods and agarose gel electrophoresis methods. Cd2+ could insert into DNA basepairs, bind to nucleic acid, and result in notable hypochromicities. The analysis of agarose gel electrophoresis, proves that Cd2+ at different concentrations does not cause DNA cleavage in vitro; however, kidneys display the classical laddering degradation of DNA in vivo, which is the result of the promotion of deoxyribonuclease activity or inhibition of superoxide dismutase and catalyse activity and the accumulation of reactive oxygen species caused by Cd2+ ions in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. R. Dixon and J. W. Wilson, Genetics and marine pollution, Hydrobiologia, 420, 43 (2000).

    Article  Google Scholar 

  2. L. X. Xiang, J. Z. Shao, and Z. Meng, Apoptosis induction in fish cells under stress of six heavy metal ions, Prog. Biochem. Biophys. 28(6), 866–869 (2001) (in Chinese).

    Google Scholar 

  3. X. W. Zhou, G. N. Zhu, J. H. Sun, and M. Jilisa, The liver cellular DNA breaks and repair of the fish (caressius auratus) induced by the sublethal metal mixture, Nucl. Tech. 25(6), 408–412 (2002) (in Chinese).

    CAS  Google Scholar 

  4. Y. F. Zhu, R. H. Cui, Z. Q. Ge, F. S. Hong, and Y. X. Xu, Biological accumulation of metals in Cambarus clarkii, Reservoir Fis. 23(1), 11–12 (2003) (in Chinese).

    CAS  Google Scholar 

  5. Y. F. Zhu and Z. Q. Ge, Effects of copper and cadmium accumulation on Heavy release in Cambarus clarkii, Reservoir Fish. 24(4), 26–27 (2004) (in Chinese).

    Google Scholar 

  6. M. P. Waalkes, Cadmium carcinogenesis in review, J. Inorg. Biochem. 79, 241–244 (2002).

    Article  Google Scholar 

  7. E. A. Hassoun and S. J. Stohs, Cadmium-induced production of superoxide anion and nitric oxide, DNA single strand breaks and lactate dehydrogenase leakage in J774A. 1. Cell cultures, Toxicology 112, 219–226 (1996).

    Article  PubMed  CAS  Google Scholar 

  8. M. Shimizu, J. F. Hochadel, and M. P. Waalkes, Effects of glutathione depletion on cadmium-induced metallothionein synthesis, cytotoxicity, and proto-oncogene expression in cultured rat myoblasts, J. Toxicol. Environ. Health 51, 609–621 (1997).

    Article  PubMed  CAS  Google Scholar 

  9. N. Asatiani, N. Sapojnikova, M. Abuladze, et al., Effects of Cr(VI) long-term and low-dose action on mammalian antioxidant enzymes (an in vitro study), J. Inorg Biochem. 98, 490–496 (2004).

    Article  PubMed  CAS  Google Scholar 

  10. A. Hartwig, Carcinogenicity of metal compounds: possible role of DNA repair inhibition, Toxicol. Lett. 103, 235–239 (1998).

    Article  Google Scholar 

  11. Z. Hossain and F. Huq, Studies, on the interaction between Cd2+ and DNA, J. Inorg. Biochem. 90, 85–96 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. D. Beyersmann and S. Hechtenberg, Cadmium, gene regulation, and cellular signalling in mammalian cells, Toxicol. Appl. Pharmacol. 144, 247–261 (1997).

    Article  PubMed  CAS  Google Scholar 

  13. H. Shimada, Y. H. Shiao, M. Shibata, and M. P. Waalkes, Cadmium suppresses apoptosis induced by chromium, J. Toxicol. Environ. Health 54(2), 159–168 (1998).

    Article  CAS  Google Scholar 

  14. J. J. Black, E. D. Evans, J. C. Harshbarger, and R. F. Zeigel, Epizootic neoplasms in fishes from a lake polluted by copper mining wastes, J. Natl. Cancer Inst. 69, 915–926 (1982).

    PubMed  CAS  Google Scholar 

  15. X. Lekube, P. M. Cajaraville, and I. Marigomez, Use of polyclonal antibodies for the detection of changes by cadmium in lysosomes of aquatic organisms, Sci. Total Environ. 247, 201–212 (2000).

    Article  PubMed  CAS  Google Scholar 

  16. B. Victor, Hispathological progression of hemic neoplasms in the tropical crab Pratelphusa hydromous (Herbst) treated with sublethal cadmium chloride, Arch. Environ. Contam. Toxicol. 25, 48–54 (1993).

    Article  CAS  Google Scholar 

  17. D. Hoole, The effects of pollutants on the immune response of fish: implications for helminth parasites, Parassitologia 39, 219–225 (1997)

    PubMed  CAS  Google Scholar 

  18. P. L. Olive, DNA damage and repair in individual cells: applications of the comet assay in radiobiology, Int. J. Radiat. Biol. 75, 395–405 (1999).

    Article  PubMed  CAS  Google Scholar 

  19. J. Zhou, M. A. Bruns, and J. M. Tiedje, DNA recovery from soils of diverse composition, Appl. Environ. Microbiol. 62, 316–322 (1996).

    PubMed  CAS  Google Scholar 

  20. M. Kunitz, Crystalline deoxyribonuclease I, J. Gen. Physiol. 33, 349–362 (1950).

    Article  PubMed  CAS  Google Scholar 

  21. C. Beauchamp and I. Fridovich, Superoxide dismutase: improved assays and assay applicable to acrylamide gels, Anal. Biochem. 44, 276–286 (1971).

    Article  PubMed  CAS  Google Scholar 

  22. A. Claiborne, Catalase activity, in Handbook of Methods for Oxygen Free Radical Research, R. A. Greenwald, ed., CRC, Boca Raton, FL, (1985).

    Google Scholar 

  23. J. A. Buege and S. D. Aust, Microsomal lipid peroxidation, Methods Enzymol 52, 302–310 (1978).

    Article  PubMed  CAS  Google Scholar 

  24. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. L. Randall, Protein measurement with the folin phenol reagent, J. Biol. Chem. 193, 265–275 (1951).

    PubMed  CAS  Google Scholar 

  25. E. B. Hua and P. Yang, Studies on the interaction of Cu2+ and Cd2+ with poly(I:C), Polyhedron 15(12), 2067–2070 (1996).

    Article  CAS  Google Scholar 

  26. E. B. Hua and P. Yang, Studies on the interaction between poly(I:C) and Cd2+, Chem. J. Chin. Univ. 17(8), 1185–1187 (1996) (in Chinese).

    CAS  Google Scholar 

  27. Mudasir, N. Yoshioka, and H. Inoue, DNA binding of iron(II) mixed-ligand complexes containing 1,10-phenanthroline and 4,7-diphenyl-1,10-phenanthroline, J. Inorg. Biochem. 77, 239–247 (1999).

    Article  PubMed  CAS  Google Scholar 

  28. M. P. Waalkes and G. Oberdorster, in Biological Effects of Heavy Metals, E. C. Foulkes, ed., CRC, Boca Raton, Fl, pp. 129–157 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, F., Wu, C., Liu, C. et al. Interaction mechanism between Cd2+ ions and DNA from the kidney of the silver crucian carp. Biol Trace Elem Res 110, 33–42 (2006). https://doi.org/10.1385/BTER:110:1:33

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:110:1:33

Index Entries

Navigation