Skip to main content
Log in

Persistent alterations in biomarkers of oxidative stress resulting from combined in Utero and neonatal manganese inhalation

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Neonatal female and male rats were exposed to airborne manganese sulfate (MnSO4) during gestation and postnatal d 1–18. Three weeks post-exposure, rats were killed and we assessed biochemical end points indicative of oxidative stress in five brain regions: cerebellum, hippocampus, hypothalamus, olfactory bulb, and striatum. Glutamine synthetase (GS) protein levels, metallothionein (MT) and GS mRNA levels, and total glutathione (GSH) levels were determined for all five regions. Overall, there was a statistically significant effect of manganese exposure on decreasing brain GS protein levels (p=0.0061), although only the highest dose of manganese (1 mg Mn/m3) caused a significant increase in GS messenger RNA (mRNA) in both the hypothalamus and olfactory bulb of male rats and a significant decrease in GS mRNA in the striatum of female rats. This highest dose of manganese had no effect on MT mRNA in either males or females; however, the lowest dose (0.05 mg Mn/m3) decreased MT mRNA in the hippocampus, hypothalamus, and striatum in males. The median dose (0.5 mg Mn/m3) led to decreased MT mRNA in the hippocampus and hypothalamus of the males and olfactory bulb of the females. Overall, manganese exposure did not affect total GSH levels, a finding that is contrary to those in our previous studies. Only the cerebellum of manganese-exposed young male rats showed a significant reduction (p<0.05) in total GSH levels compared to control levels. These data reveal that alterations in biomarkers of oxidative stress resulting from in utero and neonatal exposures of airborne managanese remain despite 3 wk of recovery; however, it is important to note that the doses of manganese utilized represent levels that are 100-fold to a 1000-fold higher than the inhalation reference concentration set by the US Environmental Protection Agency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. W. Dobson, S. Weber, D. C. Dorman, L. K. Lash, K. M. Erikson, and M. Aschner, Inhaled manganese sulfate and measures of oxidative stress in rat brain. Biol. Trace Element Res. 93, 113–126 (2003).

    Article  CAS  Google Scholar 

  2. S. Weber, D. C. Dorman, L. H. Lash, K. Erikson, K. E. Vrana, and M. Aschner Effects of managanese (Mn) on the developing rat brain: oxidative-stress related endpoints. Neurotoxicology 23, 169–175 (2002).

    Article  PubMed  CAS  Google Scholar 

  3. K. M. Erikson, D. C. Dorman, L. H. Lash, A. W. Dobson, and M. Aschner. Airborne manganese exposure differentially affects endpoints of oxidative stress in an age and sex-dependent manner. Biol Trace Element Res. 100, 49–62 (2004).

    Article  CAS  Google Scholar 

  4. L. S. Hurley and C. L. Keen, Manganese,. in Trace Elements in Human Health and Animal Nutrition, E. Underwood and W. Mertz, eds., Academic, New York, pp. 185–223 (1987).

    Google Scholar 

  5. M. Aschner, K. M. Erikson, and D. C. Dorman, Manganese dosimetry: species differences and implications for neurotoxicity. Crit. Rev. Toxicol. 35, 1–32 (2005).

    Article  PubMed  CAS  Google Scholar 

  6. ATSDR (Agency for Toxic Substances and Disease Registry). Toxicological Profile for Managanese, US Department of Health and Human Services Public Health Service. Available at http://www.atsdr.cdc.gov/toxprofiles/tp151.html (accessed September 2000).

  7. D. Mergler, G. Huel, R. Bowler, et al., Nervous system dysfunction among workers with long-term exposure to managenese. Environ. Res. 64, 151–180 (1994).

    Article  PubMed  CAS  Google Scholar 

  8. P. K. Pal, A. Samii, and D. B. Calne, Manganese neurotoxicity: a review of clinical features, imaging and pathology. Neurotoxicology 20, 227–238 (1999).

    PubMed  CAS  Google Scholar 

  9. E. D. Pellizzari, C. A. Clayton, C. E. Rodes, et al., Particulate matter and manganese exposures in Indianapolis, Indiana, J. Exp. Anal. Environ. Epidemiol. 11, 423–440 (2001).

    Article  CAS  Google Scholar 

  10. M. Aschner, Manganese neurotoxicity and oxidative damage, in Metals and Oxidative Damage in Neurological Disorders, J. R. Connor, ed., Plenum, New York, pp. 77–93 (1997).

    Google Scholar 

  11. W. N. Sloot, J. Kort, J. F. Koster, L. E. A. DeWit, and J. B. P. Gramsbergen, Manganese-induced hydroxyl radical formation in rat striatum is not attenuated by dopamine depletion or iron chelation in vivo. Exp. Neurol. 138, 236–245 (1996).

    Article  PubMed  CAS  Google Scholar 

  12. P. Galvani, P. Fumagalli, and A. Santagostino, Vulnerability of mitochondrial complex I in PC12 cells exposed to manganese. Eur. J. Pharmacol. 293, 377–383 (1995).

    Article  PubMed  CAS  Google Scholar 

  13. C. E. Gavin, K. K. Gunter, and T. E. Gunter, Manganese and calcium transport in mitochondria: implications for managanese toxicity. Neurotoxicology 20, 445–453 (1999).

    PubMed  CAS  Google Scholar 

  14. F. S. Archibald and C. Tyree, Manganese poisoning and the attack of trivalent managanese upon catecholamines. Arch. Biochem. Biophys, 256, 638–650 (1987).

    Article  PubMed  CAS  Google Scholar 

  15. S. F. Ali, H. M. Duhart, G. D. Newport, G. W. Lipe, and W. Slikke, Mangenese-induced reactive oxygen species: comparison between Mn+2 and Mn+3. Neurodegeneration, 4, 329–334 (1995).

    Article  PubMed  CAS  Google Scholar 

  16. J. Y. Chen, G. C. Tsao, Q. Zhao and W. Zheng, Differential cytotoxicity of Mn(II) and Mn(III): special reference to mitochondrial [Fe−S] containing enzymes. Toxicol. Appl. Pharmacol. 175, 160–168 (2001).

    Article  PubMed  CAS  Google Scholar 

  17. K. K. Gunter, L. M. Miller, M. Aschner, et al., XANEs spectroscopy: a promising tool for toxicology: a tutorial. Neurotoxicology 23, 127–146 (2002).

    Article  PubMed  CAS  Google Scholar 

  18. D. HaMai A. Campbell, and S. C. Bondy, Modulation of oxidative events by multivalent manganese complexes in brain tissue. Free Radical Biol. Med. 31, 763–768 (2001).

    Article  CAS  Google Scholar 

  19. D. C. Dorman, B. E. McManus, M. W. Marshall, R. A. James, and M. F. Struve, Old age and gender influence the pharmacokinetics of inhaled managanese sulfate and manganese phosphate in rats. Toxicol. Appl. Pharmacol. 197, 113–124 (2004).

    Article  PubMed  CAS  Google Scholar 

  20. V. Barbu and F. Dautry, Northern blot normalization with a 28S rRNA oligonucleotide probe. Nucleic Acids Res. 17, 7115 (1989).

    Article  PubMed  CAS  Google Scholar 

  21. M. W. Fariss and D. J. Reed, High-performance liquid chromatography of thiols and disulfides: dinitrophenol derivatives, Methods Enzymol. 143, 101–109 (1987).

    Article  PubMed  CAS  Google Scholar 

  22. L. H. Lash and J. J. Tokarz, Oxidative stress in isolated rat renal proximal and distal tubular cells, Am. J. Physiol 259, F338-F347 (1990).

    PubMed  CAS  Google Scholar 

  23. L. H. Lash and E. B. Woods, Cytotoxicity of alkylating agents in isolated rat kidney proximal and distal tubular cells, Arch. Biochem. Biophys. 286, 46–56 (1991).

    Article  PubMed  CAS  Google Scholar 

  24. J. M. Davis, Inhalation health risks and manganese: an EPA perspective, Neurotoxicology 20, 511–518 (1999).

    PubMed  CAS  Google Scholar 

  25. D. C. Dorman, A. M. McElveen, M. W. Marshall, et al., Maternal-fetal distribution of manganese in the rat following inhalation exposure to manganese sulfate, Neurotoxicology, in press.

  26. D. C. Dorman, A. M. McElveen, M. W. Marshall, et al., Tissue manganese concentrations in lactating rats and their offspring following combined in utero and lactation exposure to inhaled manganese sulfate, Toxicol. Sci. 84, 12–21 (2005)

    Article  PubMed  CAS  Google Scholar 

  27. C. L. Keen, J. G. Bell, and B. Lonnerdal, The effect of age on manganese uptake and retention from milk and infant formulas in rats, J. Nutr. 116(3), 395–402 (1986).

    PubMed  CAS  Google Scholar 

  28. A. Martinez-Hernandez, K. P. Bell, and M. D. Norenberg, Glutamine synthetase: glial localization in the brain, Science 195, 1356–1358 (1977).

    Article  PubMed  CAS  Google Scholar 

  29. U. Sonnewald, N. Westergaard, and A. Schousboe, Glutamate transport and metabolism in astrocytes, Glia 21, 56–63 (1997).

    Article  PubMed  CAS  Google Scholar 

  30. E. R. Stadtman, Protein oxidation and aging, Science 257, 1220–1224 (1992).

    Article  PubMed  CAS  Google Scholar 

  31. M. Aschner, The functional significance of brain metallothioneins, FASEB J. 10, 1129–1136 (1996).

    PubMed  CAS  Google Scholar 

  32. S. Hussain, W. Slikker, Jr., and S. F. Ali, Role of metallothionein and other antioxidants in scavenging superoxide radicals and their possible role in neuroprotection, Neurochem. Int. 29, 145–152 (1996).

    Article  PubMed  CAS  Google Scholar 

  33. M. Kondoh, Y. Inoue, S. Atagi, et al., Specific induction of metallothionein synthesis by mitochondrial oxidative stress, Life Sci. 69., 2137–2146 (2001).

    Article  PubMed  CAS  Google Scholar 

  34. A. Meister and M. E. Anderson, Glutathione, Annu. Rev. Biochem. 52, 711–760 (1983).

    Article  PubMed  CAS  Google Scholar 

  35. M. S. Desole, G. Esposito, R. Mighelli, et al., Cellular defence mechanisms in the striatum of young and aged rats subchronically exposed to manganese, Neuropharmacology 34, 289–295 (1995).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erikson, K.M., Dorman, D.C., Lash, L.H. et al. Persistent alterations in biomarkers of oxidative stress resulting from combined in Utero and neonatal manganese inhalation. Biol Trace Elem Res 104, 151–163 (2005). https://doi.org/10.1385/BTER:104:2:151

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:104:2:151

Index Entries

Navigation