Skip to main content
Log in

Effects of statins on oxidative stress

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Free oxygen radicals and insufficient antioxidant enzymes have been implicated in the pathogenesis of hypercholesterolemia (HC). Trace elements function as cofactors in antioxidant enzymes. Antioxidant system and trace elements were investigated in many different studies including HC, but these subjects have not been investigated as a whole in these patients. The aim of the present study was to investigate the antioxidative system and trace elements in hypercholesterolemic patients given fluvastatin therapy.

We examined malondialdehyde (MDA), copper zinc-superoxide dismutase (CuZn-SOD), and glutathione peroxidase (GSH-Px) activities together with copper (Cu), iron (Fe), and zinc (Zn) levels in erythrocytes of 35 patients with HC and 27 healthy control subjects. It was found that in patients with HC, erythrocyte MDA was significantly higher than those of controls and erythrocyte CuZn-SOD and GSH-Px activities were significantly lower in patients with HC. Erythrocyte iron levels were significantly higher than those of controls, and erythrocyte copper and zinc levels were significantly lower in patients with HC. Plasma lipid levels and the oxidative state were analyzed in statin-treatment groups given fluvastatin therapy before and after a 3-mo treatment period.

In conclusion, we found that fluvastatin has significant antioxidant properties and these effects might be very important in managing dyslipidemia by improving endothelial function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Palinski and S. Tsimikas, Immunomodulatory effects of statins: mechanisms and potential impact on arteriosclerosis, J. Am. Soc. Nephrol. 13(6), 1673–1681 (2002).

    Article  PubMed  CAS  Google Scholar 

  2. S. Wolfrum, K. S. Jensen, and J. K. Liao, Endothelium-dependent effects of statins, Arterioscler. Thromb. Vasc. Biol. 27, 729–736 (2003).

    Article  Google Scholar 

  3. L. J. Ignarro, C. Napoli, and J. Loscalzo, Nitric oxide donors and cardiovascular agents modulating the bioactivity of nitric oxide: an overview, Circ. Res. 90, 21–28 (2002).

    Article  PubMed  CAS  Google Scholar 

  4. A. M. Gotto, Jr, Statin therapy: where are we? where do we go next? Am. J. Cardiol. 87, 13B-18B (2001).

    Article  PubMed  CAS  Google Scholar 

  5. C. Guijarro, L. M. Blanco-Colio, M. Ortego, et al., 3-Hydroxy-3-methylglutaryl coenzyme A reductase and isoprenylation inhibitors induce apoptosis of vascular smooth muscle cells in culture, Circ. Res. 83, 490–500 (1998).

    PubMed  CAS  Google Scholar 

  6. L. Liu, P. Moesner, N. L. Kovach, et al., Integrin-dependent leukocyte adhesion involves geranylgeranylated protein(s), J. Biol. Chem. 274, 33,334–33,340 (1999).

    CAS  Google Scholar 

  7. F. M. Sacks, M. A. Pfeffer, L. A. Moye, et al., The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators, N. Engl. J. Med. 335, 1001–1009 (1996).

    Article  PubMed  CAS  Google Scholar 

  8. M. Essig, G. Nguyen, D. Prie, et al., 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors increase fibrinolytic activity in rat aortic endothelial cells: role of geranylgeranylation and Rho proteins, Circ. Res. 37, 683–690 (1998).

    Google Scholar 

  9. U. Laufs, K. Gertz, P. Huang, et al., Atorvastatin upregulates type III nitric oxide synthase in thrombocytes, decreases platelet activation, and protects from cerebral ischemia in normocholesterolemic mice, Stroke 31, 2442–2449 (2000).

    PubMed  CAS  Google Scholar 

  10. S. Wassmann, U. Laufs, A. T. Baumer, et al., HMG-CoA reductase inhibitors improve endothelial dysfunction in normocholesterolemic hypertension via reduced production of reactive oxygen species, Hypertension 37, 1450–7145 (2001).

    PubMed  CAS  Google Scholar 

  11. S. I. McFarlane, R. Muniyappa, R. Francisco, et al., Clinical review 145. Pleiotropic effects of statins: lipid reduction and beyond, J. Clin. Endocrinol. Metab. 87(4), 1451–1458 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. F. Galli, F. Canestrari, and G. Bellomo, Pathophysiology of the oxidative stress and its implication in uremia and dialysis, in Vitamin E-Bonded Membrane. A Further Step in Dialysis Optimization, C. Ronco and G. La Greca (eds.), Contributions in Nephrology, Vol. 27, Karger, Basel, pp. 1–31 (1999).

    Google Scholar 

  13. J. Hopkins and G. R. Tudhope, Glutathione peroxidase in human red cells in health and disease, Br. J. Haematol. 25, 563–575 (1973).

    PubMed  CAS  Google Scholar 

  14. J. Nève, Methods in determination of selenium states, J. Trace Elements Electrolytes Health Dis. 5, 1–17 (1991).

    Google Scholar 

  15. N. W. Alcock, Trace elements, in Clinical Chemistry, 3rd ed., L. A. Kaplan and A. J. Pesce (eds.), Mosby-Year Book, St. Louis, MO, p. 746 (1996).

    Google Scholar 

  16. J. Aaseth and T. Norsth, Copper, in Handbook on the Toxicology of Metals, L. Friberg, G. F. Nordberg, and V. B. Vouk (eds.), Elsevier, New York, Vol. II, pp. 233–249 (1986).

    Google Scholar 

  17. J. H. Kramer, T. Mak, and W. B. Weblicki, Differential sensitivity of canine cardiac sarcolemmal and microsomal enzymes to inhibition by free radical induced lipid peroxidation, Circ. Res. 55, 120–124 (1984).

    PubMed  CAS  Google Scholar 

  18. S. U. Rajguru, G. S. Yeargans, and N. W. Seidler, Exercise causes oxidative damage to rat skeletal muscle microsomes while increasing cellular sulphydryls, Life Sci. 54, 149–157 (1993).

    Article  Google Scholar 

  19. V. Nair, G. A. Turner, and R. J. Offerman, Novel adducts from the modification of nucleic acid bases by malondialdehyde, J. Am. Chem. Soc. 106, 3370–3371 (1984).

    Article  CAS  Google Scholar 

  20. A. Aydin, H. Orhan, A. Sayal, et al., Oxidative stress and nitric oxide related parameters in type II diabetes mellitus: effects of glycemic control, Clin. Biochem. 34, 65–70 (2001).

    Article  PubMed  CAS  Google Scholar 

  21. S. K. Jain, Hyperglycemia can cause membrane lipid peroxidation and osmotic fragility in human red blood cells, J. Biol. Chem. 264, 21,340–21,345 (1989).

    CAS  Google Scholar 

  22. S. Taddel, A. Virdis, L. Ghiadoni, et al., Effects of hypertensive drugs on endothelial dysfunction: clinical implications, Drugs 62(2), 265–284 (2002).

    Article  Google Scholar 

  23. H. Sies, Oxidative stress: introductory remarks, in Oxidative Stress, H. Sies (ed.), Academic, Orlando, FL, p. 1 (1985).

    Google Scholar 

  24. M. N. Diaz, B. Frei, J. A. Vita, et al., Antioxidants and atherosclerotic heart disease, N. Engl. J. Med. 337, 408 (1997).

    Article  PubMed  CAS  Google Scholar 

  25. M. L. Kennedy, M. L. Failla, and J. C. Smith, Jr., Influence of genetic obesity on tissue concentrations of zinc, copper, manganese, and iron in mice, J. Nutr. 116, 1432–1441 (1986).

    PubMed  CAS  Google Scholar 

  26. S. Delbosc, M. Morena, F. Djouad, et al., 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors are able to reduce superoxide anion production by NADPH oxidase in THP-1-derived monocytes, J. Cardiovasc. Pharmacol. 40(4), 611–617 (2002).

    Article  PubMed  CAS  Google Scholar 

  27. R. De Caterina, F. Cipollone, F. P. Filardo, et al., Low-density lipoprotein level reduction by the 3-hydroxy-3-methylglutaryl coenzyme-A inhibitor simvastatin is accompanied by a related reduction of F2-isoprostane formation in hypercholesterolemic subjects: no further effect of vitamin E, Circulation 106(20), 2543–2549 (2002).

    Article  PubMed  Google Scholar 

  28. J. Beltowski, G. Wojcicka, M. Mydlarczyk, et al., Cerivastatin modulates plasma paraoxonase/arylesterase activity and oxidant-antioxidant balance in the rat, Pol. J. Pharmacol. 54(2), 143–150 (2002).

    PubMed  CAS  Google Scholar 

  29. R. E. Wildman and S. Mao, Tissue-specific alterations in lipoprotein lipase activity in copper-deficient rats, Biol. Trace Element Res. 80(3), 221–229 (2001).

    Article  CAS  Google Scholar 

  30. M. Fields and C. G. Lewis, Level of dietary iron, not type of dietary fat, is hyperlipidemic in copper-deficient rats, Am. Coll. Nutr. 18(4), 353–357 (1999).

    CAS  Google Scholar 

  31. D. J. Lamb, G. L. Reeves, A. Taylor, et al., Dietary copper supplementation reduces atherosclerosis in the cholesterol-fed rabbit, Atherosclerosis 146(1), 33–43 (1999).

    Article  PubMed  CAS  Google Scholar 

  32. A. E. Say, M. Gursurer, M. V. Yazicioglu, et al., Impact of body iron status on myocardial perfusion, left ventricular function, and angiographic morphologic features in patients with hypercholesterolemia, Am. Heart J. 143(2), 257–264 (2002).

    Article  PubMed  Google Scholar 

  33. R. G. Weginwar, S. Enomoto, R. Hirunuma, et al., Correlation between serum cholesterols and trace element uptake in liver, kidney, and blood of hypercholesterolemic mice, Biol. Trace Element Res. 86(3), 249–268 (2002).

    Article  CAS  Google Scholar 

  34. J. Delattre, S. Lepage, M. C. Jaudon, et al., The plasma antioxidant status and trace elements in patients with familial hypercholesterolemia treated with LDL-apheresis, Ann. Pharm. Fr. 56(1), 18–25 (1998).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yilmaz, M.I., Baykal, Y., Kilic, M. et al. Effects of statins on oxidative stress. Biol Trace Elem Res 98, 119–127 (2004). https://doi.org/10.1385/BTER:98:2:119

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:98:2:119

Index Entries

Navigation