Skip to main content
Log in

Zinc uptake by human erythrocytes with and without serum albumins in the medium

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Different mechanisms of Zn uptake are present in mammalian cells. The variations in the Zn uptake by human erythrocytes in the absence and presence of albumins, bovine and human, as well as the differences of Zn uptake with and without 4-4′-diidothiocyanatostilbene-2,2′-disulfonic acid have been analyzed in this study. The results show a significantly greater rate of Zn uptake in the absence rather than in the presence of albumins in the extracellular medium and being significantly greater with bovine than with human serum albumin when the experiments were performed in media with equimolar concentrations of Zn. However, when comparing Zn uptake in a medium without albumin with similar free-Zn concentration to Zn ultrafiltrable (20%) of other one with albumin, a significantly greater Zn uptake on the latter was observed. The DIDS inhibition on Zn uptake is higher if the albumin is also present in the medium. These results suggest that in Zn uptake by erythrocytes the albumin directly or indirectly would be involved, facilitating the well-known processes of passive transport and anionic exchanger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. J. Reyes, Zinc transport in mammalian cells, Am. J. Physiol. 270 (Cell Physiol. 39), C401–C410 (1996).

    PubMed  CAS  Google Scholar 

  2. J. P. Van Wouwe, M. Veldhuizen, J. J. M. De Goeij, and C. J. A. Van Dan Hamer, In vitro exchangeable erythrocyte zinc, Biol. Trace Element Res. 25, 57–69 (1990).

    Article  Google Scholar 

  3. J. O. Alda and R. Garay, Evidence for a major route for zinc uptake in human red blood cells: [Zn (HCO3)2Cl] influx through the [Cl/HCO 3 ] anion exchanger, J. Cell. Physiol. 138, 316–322 (1989).

    Article  Google Scholar 

  4. V. Kalfakakou and T. J. B. Simons, Anionic mechanisms of zinc across the human red cell membrane, J. Physiol. 421, 485–497 (1990).

    PubMed  CAS  Google Scholar 

  5. Y. Matsumoto and M. Ohsako, Transport of drugs through human erytrhocyte membranes: pH dependence of drug transport through labeled human erythrocyte in the presence of band 3 protein inhibitor, J. Pharmacol. Sci. 81(5), 428–431 (1992).

    Article  CAS  Google Scholar 

  6. S. P. Aiken, N. M. Horn, and N. R. Sauders, Effects of amino acids on zinc transport in rat erythrocytes, J. Physiol. Lond. 445, 69–80 (1992).

    PubMed  CAS  Google Scholar 

  7. K. Sivarama-Satry, L. Viswanathan, A. Ramaiah, and P. S. Sarma, Studies on the binding of 65Zn by equine erythrocytes in vitro, Biochem. J. 74, 561–567 (1960).

    Google Scholar 

  8. N. M. Horn and A. L. Thomas, Interactions between the histidine stimulation of cadmium and zinc influx into human erythrocytes, J. Physiol. Lond. 496(Pt. 3), 711–718 (1996).

    PubMed  CAS  Google Scholar 

  9. J. De Kok, C. Van Der Schoot, M. Veldhuizen, and H. T. Wolterbeek, The uptake of zinc by erythrocytes under near-physiological conditions, Biol. Trace Element Res. 38, 13–26 (1993).

    Google Scholar 

  10. T. B. J. Simons, Ca-dependent zn efflux in human red blood cells, J. Membrane Biol. 123, 73–82 (1991).

    Article  CAS  Google Scholar 

  11. L. Recant and D. S. Riggs, Thyroid function in nephrosis, J. Clin. Invest. 31, 789–797 (1952).

    PubMed  CAS  Google Scholar 

  12. H. Faure, A. Favier, M. Tripier, and J. Arnaud, Determination of major zinc fractions in human serum by ultrafiltration, Biol. Trace Element Res. 24, 25–37 (1990).

    CAS  Google Scholar 

  13. W. R. Harris and C. Keen, Calculation of the distribution of zinc in a computer model of human serum, J. Nutr. 119 (11), 1677–1682 (1989).

    PubMed  CAS  Google Scholar 

  14. E. Gomez, C. del Diego, I. Orden, L. M. Elósegui, L. Borque, and J. F. Escanero, Longitudinal study of serum copper and zinc levels and their distribution in blood proteins after acute myocardial infarction, J. Trace Elements Med. Biol. 14, 65–70 (2000).

    Article  CAS  Google Scholar 

  15. M. C. Castellano, F. Soteras, A. Córdova, L. M. Elósegui, and J. F. Escanero, Zinc distribution between protein serum ligands in rats: acute and chronic overload of zinc, Med. Sci. Res. 16, 1229–1230 (1988).

    CAS  Google Scholar 

  16. B. Meloun, L. Moravek, and V. Kostka, Complete amino acid sequence of human serum albumin, FEBS Lett. 58, 134–137 (1975).

    Article  PubMed  CAS  Google Scholar 

  17. U. Kragh-Hansen, Molecular aspects of ligand binding to serum albumin, Pharmacol. Rev. 33, 17–54 (1981).

    PubMed  CAS  Google Scholar 

  18. H. Lakusta, C. M. Debes, and B. Sarkar, Complexation of Zn2+ to a native sequence tripeptide of human serum albumin studied by 13C nuclear magnetic resonance, Can. J. Chem. 58, 757–766 (1980).

    Article  CAS  Google Scholar 

  19. E. L. Giroux and J. J. Schoun, Copper and zinc ion binding by bovine, dog, and rat serum albumins, Inorg. Biochem. 14, 359–362 (1981).

    Article  CAS  Google Scholar 

  20. J. Masuoka, J. Hegenauer, B. R. Van Dyke, and P. Saltman, Intrinsic stoichiometric equilibrium constants for the binding of zinc (II) and copper (II) to the high affinity site of serum albumin, J. Biol. Chem. 268 (29), 21,533–21,537 (1993).

    CAS  Google Scholar 

  21. H. Waldmmann-Meyer, Thermodynamic proton, cadmium and zinc-binding constants of serum albumin determined by zone electrophoresis, J. Biol. Chem. 235, 3337–3345 (1960).

    Google Scholar 

  22. M. Gálvez, L. M. Elósegui, M. Guerra, J. A. Moreno, and J. F. Escanero, Zinc exchange between erythrocytes and a medium with and witthout albumin at different temperatures, in Metal Ions in Biology and Medicine, J. Anastassoupoulo, P. Collery, T. Theophanides, and J. C. Etienne, eds., John Libbey Eurotext, París, Vol. 2, pp. 89–90 (1992).

    Google Scholar 

  23. M. Gálvez, J. A. Moreno, L. M. Elósegui, and J. F. Escanero, Zinc-uptake by human erythrocytes. 1. Effect of Na+ and K+ in the medium at different temperatures, in Metal Ions in Biology and Medicine, J. Anastassoupoulo, P. Collery, T. Theophanides, and J. C. Etienne, eds., John Libbey Eurotext, París, Vol. 4, pp. 218–221 (1996).

    Google Scholar 

  24. M. Gálvez, J. A. Moreno, L. M. Elósegui, and J. F. Escanero, Zinc-uptake by human erythrocytes. 2. Effect of the temperature on Zn-uptake sensitive to the stilbenes, in Metal Ions in Biology and Medicine, J. Anastassoupoulo, P. Collery, T. Theophanides, and J. C. Etienne, eds., John Libbey Eurotext, París, Vol. 4, pp. 222–224 (1996).

    Google Scholar 

  25. W. M. Pardridge, Blood-brain barrier carrier-mediated transport and brain metabolism of amino acids, Neurochem. Res. 23(5), 635–644 (1998).

    Article  PubMed  CAS  Google Scholar 

  26. G. J. Van Den Berg and C. J. Van Den Hamer, Trace element uptake in liver cell. 2. Effect of different proteins in the medium on the uptake of copper and zinc by hepatoma cells, J. Inorg. Biochem. 24(4), 289–297 (1985).

    Article  PubMed  Google Scholar 

  27. D. A. Newesome and R. J. Rothman, Zinc uptake in vitro by human retinal pigment epithelium, Invest. Ophthalmol. Vis. Sci. 28, 1795–1799 (1987).

    Google Scholar 

  28. J. Francon, J. Osty, F. Chantoux, and J. P. Blondeau, Erythrocyte-associated triiodothyronine in the rat: a source of hormone for target cells, Acta Endocrinol. (Copenh.) 122, 341–348 (1990).

    CAS  Google Scholar 

  29. J. Wortsman and R. B. Traycoff, Biological activity of protein bound calcium in serum, Am. J. Physiol. 238, E104–E107 (1980).

    PubMed  CAS  Google Scholar 

  30. S. H. Laurie and D. E. Pratt, Copper-albumin: what is its functional role? Biochem. Biophys. Res. Commun. 135(3), 1064–1068 (1986).

    Article  PubMed  CAS  Google Scholar 

  31. E. L. Forker and B. A. Luxon, Effects of unstirred disse fluid, nonequilibrium binding, and surface-mediated dissociation on hepatic removal of albumin-bound organic anions, Am. J. Physiol. 248, G709-G717 (1985).

    PubMed  CAS  Google Scholar 

  32. F. J. Burczynski, M. N. Zhang, P. Pavietic, and G. Q. Wanq, Role of fatty acid binding protein on hepatic palmitate uptake, Can. J. Physiol. Pharmacol. 75(12), 1350–1355 (1997).

    Article  PubMed  CAS  Google Scholar 

  33. B. A. Luson, D. C. Holly, M. T. Milliano, and R. A. Weisiger, Sex differences in multiple steps in hepatic transport of palmitate support a balanced uptake mechanism, Am. J. Physiol. 274 (Gastrointes. Liver Physiol. 37), G52–G61 (1998).

    Google Scholar 

  34. H. Rose, T. Hennecke, and H. Kammermeier, Is fatty acid uptake in cardiomyocytes determine by physicochemical fatty acid partition between albumin and membrane?, Mol. Cell. Biochem. 88, 31–36 (1989).

    Article  PubMed  CAS  Google Scholar 

  35. M. E. Timble, Palmitate transport by rat renal basolateral membrane vesicles in the presence of albumin, J. Am. Soc. Nephrol. 3(12), 1920–1929 (1993).

    Google Scholar 

  36. J. Uriel, J. M. Torres, and A. Anel, Carrier-protein-mediated enhancement of fatty-acid binding and internalization in human T-lymphocytes, Biochim. Biophys. Acta 1220(3), 231–240 (1994).

    Article  PubMed  CAS  Google Scholar 

  37. B. L. Trigatti and G. E. Gerber, A direct role for serum albumin in the cellular uptake of long-chain fatty acids, Biochem. J. 308, 155–159 (1995).

    PubMed  CAS  Google Scholar 

  38. T. Janas, P. J. Bjerrum, J. Brahm, and J. O. Wieth, Kinetics of reversible inhibition of chloride self exchange in human erythrocytes, Am. J. Physiol. 257 (Cell Physiol. 26), C601–C606 (1989).

    PubMed  CAS  Google Scholar 

  39. D. J. Bobilya, M. Briske-Anderson, and P. G. Reeves, Ligands influence Zn transport into cultures endothelial cells, Proc. Soc. Exp. Biol. Med. 202, 159–166 (1993).

    PubMed  CAS  Google Scholar 

  40. D. Sorrentino, K. Van Ness, D. Stump, and P. D. Berk, Oleate uptake kinetics in the perfused rat liver are consistent with pseudofacilitation by albumin, J. Hepatol. 21, 551–559 (1994).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gálvez, M., Moreno, J.A., Elósegui, L.M. et al. Zinc uptake by human erythrocytes with and without serum albumins in the medium. Biol Trace Elem Res 84, 45–56 (2001). https://doi.org/10.1385/BTER:84:1-3:045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:84:1-3:045

Index Entries

Navigation