Skip to main content
Log in

Effect of long-term treatment with vanadate in drinking water on KK mice with genetic non-insulin-dependent diabetes mellitus

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The glucose-lowering effect of vanadate, ammonium metavanadate (AMV), on diabetic KK mice was examined. Five-week-old male KK mice were administrated with a solution of AMV via drinking water at concentrations of vanadium (V) with 0.1, 1.0, 10 and 100 µg/mL for a period of 10 wk, respectively. Body weight, consumption of food and water, and blood glucose levels was measured every week for 10 wk. The results showed that food consumption and body weight in the experimental groups were similar to those in the control group. A statistically significant decrease of drinking water consumption and blood glucose levels in the group treated with 100 µg V/mL was observed. The glucose tolerance in the vanadate-treated mice with 10 and 100 µg V/mL was remarkably improved compared with the control group. Biochemical analyses at the end of experiments demonstrated that a distinct tendency for the glucose and hemoglobin A1c (HbA1c) levels to decrease with vanadate treatment in the blood was also observed. The glutamic pyruvic transaminase, glutamic oxaloacetate transaminase, blood urea nitrogen, triglyceride, high-density lipoprotein, and total cholesterol levels in plasma were lower in the higher vanadium groups than those in the control group. These results indicate that vanadium effectively produced the glucose-lowering effect at a higher dose than that at a low dose of vanadium in drinking water, without any overt signs of toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Dinneen, J. Gerich, and R. Rizza, Carbohydrate metabolism in non-insulin-dependent diabetes mellitus, N. Engl. J. Med. 327, 707–713 (1992).

    Article  PubMed  CAS  Google Scholar 

  2. E. L. Tolman, E. Barris, M. Burns, A. Pansini, and R. Partridge, Effects of vanadium on glucose metabolism in vitro, Life Sci. 25, 1159–1164 (1979).

    Article  PubMed  CAS  Google Scholar 

  3. Y. Shechter, Insulin-like effects of vanadium: mechanism of action, clinical and basic implications, Lett. in Peptide Sci. 5, 319–322 (1998).

    CAS  Google Scholar 

  4. S. Tamura, T. A. Brown, R. E. Dubler, and J. Larner, Insulin-like effect of vanadate on adipocyte glycogen synthase and on phosphorylatio of 95,000 dalton subunit of insulin receptor, Biochem. Biophys. Res. Commun. 113, 80–86 (1983).

    Article  PubMed  CAS  Google Scholar 

  5. H. Degani, M. Gochin, S. J. D. Karlish, and Y. Shechter, Electron paramagnetic resonance studies and insulin-like effects of vanadium in rat adipocytes, Biochemistry 20, 5795–5799 (1984).

    Article  Google Scholar 

  6. F. H. Nielsen, Ultrace elements in nutrition, Annu. Rev. Nutr. 4, 21–41 (1984).

    Article  PubMed  CAS  Google Scholar 

  7. J. J. Mongold, G. H. Cros, L. Vian, A. Tep, S. Ramanadham, G. Sion, et al., Toxicological aspects of vanadyl sulphate on diabetic rats: effects on vanadium levels and pancreatic B-cell morphologt, Pharmacol. Toxicol. 67, 192–198 (1990).

    PubMed  CAS  Google Scholar 

  8. Y. M. Schechter and S. J. D. Karlish, Insulin-like stimulation of glucose oxidation in rat adipocytes by vanadyl (IV) ions, Nature 284, 556–558 (1980).

    Article  Google Scholar 

  9. C. E. Heyliger, A. G. Tahiliani, and J. H. McNeill, Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats, Science 227, 1474–1476 (1985).

    Article  PubMed  CAS  Google Scholar 

  10. S. M. Brichard, A. M. Pottier, and J. C. Henquin, Long term improvement of glucose homeostasis by vanadate in obese hyperinsulinemic fa/fa rats, Endocrinology 125, 2510–2516 (1989).

    Article  PubMed  CAS  Google Scholar 

  11. S. M. Brichard, C. J. Bailey, and J. C. Henguin, Marked improvement of glucose homeostasis in diabetic ob/ob mice given oral vanadate, Diabetes 39, 1326–1332 (1990).

    Article  PubMed  CAS  Google Scholar 

  12. S. Ramanadham, G. H. Cros, J. J. Mongold, J. J. Serrano, and J. H. McNeill, Enhanced in vivo sensitivity of vanadyl-treated diabetic rats for insulin, Can. J. Physiol. Pharmacol. 68, 486–491 (1990).

    PubMed  CAS  Google Scholar 

  13. J. Meyerovitch, P. Rothenberg, Y. Shechter, S. Boner-Weir, and C. R. Kahn, Vanadate normalizes hyperglycemia in two mouse models of non-insulin-dependent diabetes mellitus, J. Clin. Invest. 87, 1286–1294 (1991).

    Article  PubMed  CAS  Google Scholar 

  14. R. U. Byerrum, Metals and their compounds in the environment, in Vanadium, E. Merian, ed., VCH, Weinheim (1991).

    Google Scholar 

  15. M. R. Fox, Assessment of cadmium, lead and vanadium status of large animals as related to the human food chain, J. Anim. Sci. 65, 1744–1752 (1987).

    PubMed  CAS  Google Scholar 

  16. S. Okabe and T. Morinaga, Vanadium and molybdenum in the river and estuary waters which pour into the Suruga Bay, Nippon Kagaku Zasshi 89, 284–287 (1968). [in Japanese]

    CAS  Google Scholar 

  17. M. Iwashita, H. Ando, H. Kageyama, and T. Shimamura, Evaluation of water quality of Sagami river and its rivers analysed by ICP-MS, Bunseki Kagaku 43, 925–932 (1994) [in Japanese].

    CAS  Google Scholar 

  18. Y. Sakai, K. Ohshita, S. Koshimizu, and K. Tomura, Geochemical study of trace vanadium in water by preconcentrational neutron activation analysis, J. Radioanal. Nucl. Chem. 216, 203–212 (1997).

    Article  CAS  Google Scholar 

  19. T. Hamada, High vanadium content in Mt. Fuji groundwater and its relevance to the ancient biosphere, in Vanadium in the Environment, J. O. Nriagu, ed., Wiley, New York, pp. 97–123 (1998).

    Google Scholar 

  20. Y. Seko, T. Hasegawa, H. Hosaka, T. Miyazaki, and M. Sugita, Regional different in the concentration of trace elements in ground water in Yamanashi Prefecture, Biomed. Res. Trace Elements 10, 271–272 (1999) [in Japanese].

    Google Scholar 

  21. Y. Tsukamoto, S. Saka, K. Kumano, S. Iwanami, O. Ishida, and F. Marumo, Abnormal accumulation of vanadium in patients on chronic hemodialysis, Nephron 56, 368–373 (1990).

    PubMed  CAS  Google Scholar 

  22. M. Nakamura and K. Yamada, Studies on a diabetic (KK) strain of the mouse, Diabetologin 3, 212–221 (1967).

    Article  CAS  Google Scholar 

  23. N. Kondo, Y. Shibayama, Y. Toyomaki, M. Yamamoto, H. Ohara, K Nakano, et al., Simple method for determination of A1c-type glycated hemoglobin(s) in rats using high performance liquid chromatography, J. Pharmacol. Methods 21, 211–221 (1989).

    Article  PubMed  CAS  Google Scholar 

  24. R. P. Steffen, M. B. Pamnani, D. L. Clough, S. J. Huot, S. M. Muldoon, and F. J. Haddy, Effect of prolonged dietary administration of vanadate on blood pressure in the rat, Hypertension 3(Pt 2), I173-I178 (1981).

    PubMed  CAS  Google Scholar 

  25. H. A. Schroeder and J. J. Balassa, Arsenic, germanium, tin and vanadium in mice: effects on growth, survival and tissue levels, J. Nutri. 92, 245–252 (1987).

    Google Scholar 

  26. CBEAP (Committee on Biologic Effects of Atmospheric Pollutants), Vanadium, National Academy of Sciences, Washington, DC, pp. 55–56 (1974).

    Google Scholar 

  27. J. L. Domingo, M. Gomez, J. M. Llobet, J. Corbella, and C. L. Keen, Improvement of glucose homeostasis by oral vanadyl or vanadate treatment in diabetic rats is accompanied by negative side effects, Pharm. Toxicol. 68, 249–253 (1991).

    CAS  Google Scholar 

  28. C. Zenz, Vanadium, Metals in the Environment, H. A. Waldron, ed., Academic, London, pp. 300–310 (1980).

    Google Scholar 

  29. K. H. Tompson, Vanadium and diabetes, BioFactors 10, 43–51 (1999).

    Google Scholar 

  30. A. M. Gomez-Foix, J. E. Rodriguez-Gil, C. Fillat, J. J. Guinovart, and F. Bosch, Vanadate raises fructose 2,6-biophosphate concentrations and activiates glycolysis in rat hepatocytes, Biochem. J. 255, 507–512 (1988).

    PubMed  CAS  Google Scholar 

  31. J. Singh, R. C. Nordlie, and R. A. Jorgenson, Vanadate: a potent inhibitor of multifunctional glucose-6-phosphatase, Biochem. Biophys. Acta 678, 477–482 (1981).

    PubMed  CAS  Google Scholar 

  32. J. A. Fagin, K. Ikejiri, and S. R. Levin, Insulinotropic effects of vanadate, Diabetes 36, 1448–1452 (1987).

    Article  PubMed  CAS  Google Scholar 

  33. J. L. Leahy, H. E. Cooper, and G. C. Weir, Impaired insulin secretion associated with near normoglycemia: study in normal rats with 96-h in vivo glucose infusions, Diabetes 36, 459–464 (1987).

    Article  PubMed  CAS  Google Scholar 

  34. T. Yamanouchi, H. Akabuna, F. Takaku, and Y. Akabuma, Marked depletion of plasma 1,5-anhydroglucitol, a major polyol in streptozocin-induce diabetes in rats and the effect of insulin treatment, Diabetes 35, 204–209 (1986).

    Article  PubMed  CAS  Google Scholar 

  35. F. Umeda, T. Yamauch, H. Ishii, N. Nakashima, A. Hisatomi, and H. Nawata, Serum 1,5-anhydro-d-glucitol and glycemic control in patients with non-insulin-dependent diabetes mellitus, Tohoku J. Exp. Med. 163, 93–100 (1991).

    Article  PubMed  CAS  Google Scholar 

  36. A. Tsuji and H. Sakurai, Vanadyl ion suppresses nitric oxide production from peritoneal macrophages of streptozotocin-induced diabetic mice, Biochem. Biophys. Res. Commun. 226, 506–511 (1996).

    Article  PubMed  CAS  Google Scholar 

  37. J. Ramasarma and F. L. Crane, Dose vanadium play a role in cellular regulation? Curr. Topics Cell Reg. 30, 247–301 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, W., Hasegawa, T., Hosaka, H. et al. Effect of long-term treatment with vanadate in drinking water on KK mice with genetic non-insulin-dependent diabetes mellitus. Biol Trace Elem Res 80, 159–174 (2001). https://doi.org/10.1385/BTER:80:2:159

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:80:2:159

Index Entries

Navigation