Skip to main content
Log in

Direct evidence for in vivo hydroxyl radical generation in blood of mice after acute chromium (VI) intake

Electron spin resonance spin-trapping investigation

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Although it is assumed from in vitro experiments that the hydroxyl radical (·OH) may be responsible for chromium(VI) toxicity / carcinogenicity, no electron spin resonance (ESR) evidence for the generation of ·OH in vivo has been reported. In this study, we have employed an ESR spin-trapping technique with 5,5-dimethylpyrroline-N-oxide (DMPO), a selective ·OH trap, to detect ·OH in blood. The ESR spectrum of spin adduct observed in the blood of mice given 4.8 mmol Cr(VI)/kg body weight exhibited the 1:2:2:1 intensity pattern of a quartet with a hyperfine coupling constant A N=A H=14.81 G and g-value=2.0067. The concentration of the spin adduct detected in the blood was 7.37 µM. The adduct production was inhibited by the addition of specific ·OH scavengers such as sodium benzoate and methional to the blood. The results indicate that the spin adduct is nitroxide produced by the reaction of ·OH with DMPO. This is the first report of ESR evidence for the in vivo generation of ·OH in mammals by Cr(VI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Léonard and R. R. Lauwerys, Carcinogenicity and mutagenicity of chromium, Mutat. Res. 76, 227–239 (1980).

    PubMed  Google Scholar 

  2. R. Doll, Problems of epidemiological evidence, Environ. Health Perspect. 40, 11–20 (1981).

    Article  CAS  Google Scholar 

  3. S. De Flora, M. Bagnasco, D. Serra, and P. Zanacchi, Genotoxicity of chromium compounds: a review, Mutat. Res. 238, 99–172 (1990).

    PubMed  Google Scholar 

  4. P. H. Connett and K. E. Wetterhahn, Metabolism of the carcinogen chromate by cellular constituents, Struct. Bonding 54, 93–124 (1983).

    Article  CAS  Google Scholar 

  5. A. M. Standeven and K. E. Wetterhahn, Is there a role of reactive oxygen species in the mechanism of chromium(VI) carcinogenesis?, Chem. Res. Toxicol. 4, 616–625 (1991).

    Article  PubMed  CAS  Google Scholar 

  6. X. Shi and N. S. Dalal, Chromium(V) and hydroxyl radical formation during the glutathione reductase-catalyzed reduction of chromium(VI), Biochem. Biophys. Res. Commun. 163, 627–634 (1989).

    Article  PubMed  CAS  Google Scholar 

  7. X. Shi and N. S. Dalal, On the hydroxyl radical formation in the reaction between hydrogen peroxide and biologically-generated chromium(V) species, Arch. Biochem. Biophys. 277, 342–350 (1990).

    Article  PubMed  CAS  Google Scholar 

  8. X. Shi, N. S. Dalal, and K. S. Kasprzak, Generation of free radicals from hydrogen peroxide and lipid hydroperoxides in the presence of Cr(III), Arch. Biochem. Biophys. 302, 294–299 (1993).

    Article  PubMed  CAS  Google Scholar 

  9. J. R. Harbour, V. Chow, and J. R. Bolton, An electron spin resonance study of the spin adducts of OH and HO2 radicals with nitrones in the ultraviolet photolysis of aqueous hydrogen peroxide solutions, Can. J. Chem. 52, 3549–3553 (1974).

    Article  CAS  Google Scholar 

  10. J. R. Harbour and J. R. Bolton, The involvement of the hydroxyl radical in the destructive photooxidation of chlorophylls, in vivo and in vitro, Photochem. Photobiol. 28, 231–234 (1978).

    CAS  Google Scholar 

  11. B. Halliwell and J. M. Gutteridge, Role of free radicals and catalytic metal ions in human disease: an overview, in Methods in Enzymology, vol. 186, Part B (Packer, L. and Glazer, A. N., eds.), Academic, San Diego, pp. 1–85 (1990).

    Google Scholar 

  12. S. Kawanishi, S. Inoue, and S. Sano, Mechanism of DNA cleavage induced by sodium chromate(VI) in the presence of hydrogen peroxide, J. Biol. Chem. 261, 5952–5958 (1986).

    PubMed  CAS  Google Scholar 

  13. G. R. Buettner, L. W. Oberley, and S. W. H. C. Leuthauser, The effect of iron on the distribution of superoxide and hydroxyl radicals as seen by spin trapping and on the superoxide dismutase assay, Photochem. Photobiol. 28, 693–695 (1978).

    PubMed  CAS  Google Scholar 

  14. G. M. Rosen and B. A. Freeman, Detection of superoxide generated by endothelial cells, Proc. Natl. Acad. Sci. USA 81, 7269–7273 (1984).

    Article  PubMed  CAS  Google Scholar 

  15. K. Yamamoto, S. Inoue, A. Yamazaki, T. Yoshinaga, and S. Kawanishi, Site-specific DNA damage induced by cobalt(II) ion and hydrogen peroxide: role of singlet oxygen, Chem. Res. Toxicol. 2, 234–239 (1989).

    Article  PubMed  CAS  Google Scholar 

  16. J. D. Tan, S. E. Hudson, S. J. Brown, M. M. Olmstead, and P. K. Mascharak, Syntheses, structures, and reactivities of synthetic analogues of the three forms of Co(III)-bleomycin: proposed mode of light-induced DNA damage by the Co(III) chelate of the drug, J. Am. Chem. Soc. 114, 3841–3853 (1992).

    Article  CAS  Google Scholar 

  17. C. Veillon and K. Y. Patterson, Method 23: determination of chromium in human tissues by atomic absorption spectrometry, in Environmental Carcinogens—Selected Methods of Analysis. Some Metal: As, Be, Cd, Cr, Ni, Pb, Se, and Zn, (IARC Scientific Publ. No. 71, O’Neil, I. K., Schyller, P., and Fishbein, L., eds.), vol. 8, Oxford University Press, New York, pp. 433–440 (1986).

    Google Scholar 

  18. T. Mikuni, M. Tatsuta, and M. Kamachi, Production of hydroxyl-free radical by reaction of hydrogen peroxide with N-methyl-N′-nitro-N-nitrosoguanidine, Cancer Res. 45, 6442–6445 (1985).

    PubMed  CAS  Google Scholar 

  19. P. J. Thornalley, Theory and biological applications of the electron spin resonance technique of spin trapping, Life Chem. Rep. 4, 57–112 (1986).

    CAS  Google Scholar 

  20. G. R. Buettner, Spin trapping: ESR parameters of spin adducts, Free Radical Biol. Med. 3, 259–303 (1987).

    CAS  Google Scholar 

  21. S. Inoue and S. Kawanishi, ESR evidence for superoxide, hydroxyl radicals and singlet oxygen produced from hydrogen peroxide and nickel(II) complex of glycylglycyl-l-histidine, Biochem. Biophys. Res. Commun. 159, 445–451 (1989).

    Article  PubMed  CAS  Google Scholar 

  22. K. Yamamoto and S. Kawanishi, Hydroxyl free radical is not the main active species in site-specific DNA damage induced by copper(II) ion and hydrogen peroxide, J. Biol. Chem. 264, 15,435–15,440 (1989).

    CAS  Google Scholar 

  23. K. J. Liu, X. Shi, and N. S. Dalal, Synthesis of Cr(IV)-GSH, its identification and its free hydroxyl radical generation: a model compound for Cr(VI) carcinogenicity, Biochem. Biophys. Res. Commun. 235, 54–58 (1997).

    Article  PubMed  CAS  Google Scholar 

  24. C. Coudray, P. Faure, S. Rachidi, A. Jeunet, M. J. Richard, A. M. Roussel, et al., Hydroxyl radical formation and lipid peroxidation enhancement by chromium. In vitro study, Biol. Trace Element Res. 32, 161–170 (1992).

    CAS  Google Scholar 

  25. C. B. Klein, K. Frenkel, and M. Costa, The role of oxidative processes in metal carcinogenesis, Chem. Res. Toxicol. 4, 592–604 (1991).

    Article  PubMed  CAS  Google Scholar 

  26. K. S. Kasprzak, The role of oxidative damage in metal carcinogenicity, Chem. Res. Toxicol. 4, 604–615 (1991).

    Article  PubMed  CAS  Google Scholar 

  27. K. S. Kasprzak, Possible role of oxidative damage in metal-induced carcinogenicity, Cancer Invest. 13, 411–430 (1995).

    PubMed  CAS  Google Scholar 

  28. J. Kehrer, Mechanisms: free radicals and reactive oxygen species, in Comprehensive Toxicology, vol 1, Sipes, I. G., McQueen, C. A., and Gandolfi, A. J., eds.), Elsevier Science, Oxford, pp. 275–301 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hojo, Y., Okado, A., Kawazoe, S. et al. Direct evidence for in vivo hydroxyl radical generation in blood of mice after acute chromium (VI) intake. Biol Trace Elem Res 76, 75–84 (2000). https://doi.org/10.1385/BTER:76:1:75

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:76:1:75

Index Entries

Navigation