Skip to main content
Log in

Identification of mouse selenomethionine α, γ-elimination enzyme

Cystathionine γ-lyase catalyzes its reaction to generate methylselenol

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The purpose of this study was to identify the seleno-l-methionine (l-SeMet) α,γ-elimination enzyme that catalyzes l-SeMet to generate methylselenol (CH3SeH), a notable intermediate for the metabolism of selenium compounds, in mammalian tissues. The enzyme purified from ICR mouse liver was separated by one-dimensional gel electrophoresis, and the specific band was subjected to in-gel trypsin digestion followed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometric analysis. In the peptide mass fingerprinting search, the mass numbers of 14 peptides produced by tryptic digestion of the enzyme were consistent with the theoretical mass numbers calculated from the amino acid sequence of murine cystathionine γ-lyase (E.C. 4.4.1.1). The peptide sequence tags search was also performed to obtain the amino acid sequence data of five tryptic peptides. These peptides were significantly identical to the partial amino acid sequences of cystathionine γ-lyase. This enzyme was clearly shown to catalyze the α, γ-elimination reaction of l-cystathionine by the enzymological research. The K m value for the catalysis of l-cystathionine was 0.81 mM and V max was. 0.0013 unit/mg protein. These results suggested that cystathionine γ-lyase catalyzes l-SeMet to generate CH3SeH by its α,γ-elimination reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Yasumoto, T. Suzuki, and M. Yoshida, Identification of selenomethionine in soybean protein, J. Agric. Food Chem. 36, 463–467 (1988).

    Article  CAS  Google Scholar 

  2. H. Chassaigne, C. C. Chery, G. Bordin, et al., Development of new analytical methods for selenium speciation in selenium-enriched yeast material, J. Chromatogr. A 976, 409–22 (2002).

    Article  PubMed  CAS  Google Scholar 

  3. G. N. Schrauzer, The nutritional signficance, metabolism and toxicology of selenomethionine, Adv. Tood Nutr. Res. 47, 73–112 (2003).

    CAS  Google Scholar 

  4. K. Takahashi, N. Avissar, J. Whitin, et al., Purification and characterization of human plasma glutathione peroxidase: a selenoglycoprotein distinct from the known cellular enzyme, Arch. Biochem. Biophys. 256, 677–686 (1987).

    Article  PubMed  CAS  Google Scholar 

  5. J. Yarimizu, H. Nakamjra, I. Yodoi, et al., Efficiency of selenocyteine incorporation in human thioredoxin redustase, Antixid Redox. Signal. 2, 643–651 (2000).

    CAS  Google Scholar 

  6. N. Esaki, T. Nakamura, H. Tanaka, et al., Enzymatic synthesis of selenocyteine in rat liver, Biochemistry 20, 4492–4496 (1981).

    Article  PubMed  CAS  Google Scholar 

  7. E. O. Kajander, R. J. Harvima, T. O. Eloranta, et al., Metabolism cellular actions and cytotoxicity of selenomethionine in cuitured cells. Biol. Trace Element Res. 28, 57–68 (1991).

    Article  CAS  Google Scholar 

  8. N. Esaki, T. Nakamura, H. Tanaka, et al., Selenocyteine lyase, a novel enzyme that specifically acts on selenocystene, J. Biol. Chem. 257, 4386–4391 (1982).

    PubMed  CAS  Google Scholar 

  9. T. Hasegawa, T. Okuno, K. Nakamuro, et al., Identification and metabolism of seleno-cysteine-glutathione selenenyl sulfide (CySeSG) in small intestine of mice orally exposed to selenocyteine, Arch. Technol. 71, 39–44 (1996).

    CAS  Google Scholar 

  10. H. E. Ganther, Pathways of selenium metabolism including respiratory excretory products, J. Am. Coll. Toxicol. 5, 1–5 (1986).

    CAS  Google Scholar 

  11. Y. Ogra, K. Ishiwata, H. Takayama, et al., Identification of novel selenium metabolite, Se-methyl-n-acetyl-selenohexosamine, in rat urine by the HPLC-ICP MS and-ESI MS/MS methods, J Chromatogr, B 767, 301–312 (2002).

    Article  CAS  Google Scholar 

  12. Y. Kobayashi, Y. Ogra, K. Ishiwata, et al., Selenosugars are key and urinary metabolites for selenium excretion within the required to low-toxic range, Proc. Natl Acad. Sci. USA 99, 15,932–15,936 (2002).

    CAS  Google Scholar 

  13. C. Ip, H. J. Thompson, Z. Zhu, et al., In vitro and in vivo studies of methylseleninic acid: evidence that a monomethylated selenium metabolite is critical for cancer chemoprevention, Cancer Res. 60, 2882–2886 (2000).

    PubMed  CAS  Google Scholar 

  14. T. Okuno, T. Kuroda, T. Kuroda, et al., Contribution of enzymic α,γ-elimination reaction in detoxification pathway of selenomethionine in mouse liver, Toxicol. Appl. Pharmacol. 176, 18–23 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. T. Okuno, S. Motobayashi, H. Ueno, et al., Purification and characterization of mouse hepatic enzyme that converts selenomethionine to methylselenol by its α,γ-elimination, Biol. Trace Element Res., in press.

  16. W. J. Henzel, T. M. Billeci, J. T. Stults, et al., Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases, Proc. Natl. Acad. Sci. USA 90, 5011–5015 (1993).

    Article  PubMed  CAS  Google Scholar 

  17. M. Mann, P. Hojrup, and P. Roepstorff, Use of mass spectrometric molecular weight information to dentify proteins in sequence databases, Biol. Mass Spectrom. 22, 338–345 (1993).

    Article  PubMed  CAS  Google Scholar 

  18. J. R. Yates III, S. Speicher, P. R. Griffin, et al., Peptide mass maps: a highly informative approach to protein indentification, Anal. Biochem. 214, 397–408 (1993).

    Article  PubMed  CAS  Google Scholar 

  19. P. R. Griffin, M. J. MacCoss, J. K. Eng, et al., Direct database searching with MALDI-PSD spectra of peptides, Rapid. Commun. Mass Spectrom 9, 1546–1551 (1995).

    Article  PubMed  CAS  Google Scholar 

  20. M. Mann and M. Wilm, Error-tolerant identification of peptides in sequence database by peptide sequence tag, Anal. Chem. 66, 4390–4399 (1994).

    Article  PubMed  CAS  Google Scholar 

  21. U. K. Leammli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227, 680–685 (1970).

    Article  Google Scholar 

  22. F. Gharahdaghi, C. R. Weinberg, D. A. Meagher, et al., Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: a method for the removal of silver ions to enhance sensitivity, Electrophoresis 20, 601–605 (1999).

    Article  PubMed  CAS  Google Scholar 

  23. M. Yanagida, Y. Miura, K. Yagasaki, et al., Matrix assisted laser desorption/ionization time of flight-mass spectrometry analysis of proteins detected by anti-phosphotyrosine antibody on two-dimensional-gels of fibroblast cell lysates after tumor necrosis factor-α stimulation, Electrophoresis 21, 1890–1898 (2000).

    Article  PubMed  CAS  Google Scholar 

  24. M. Kussmann, E. Nordhoff, H. Rahbek-Nielsen, et al., Matrix-assisted laser desorption/ionization mass spectrometry sample preparation techniques designed for various peptide and protein analysis. J. Mass Spectrom. 32, 593–601 (1997).

    Article  CAS  Google Scholar 

  25. H. Lineweaver and D. Burk, The detemination of enzyme dissociation constants, J. Am. Chem. Soc. 56, 658–666 (1934).

    Article  CAS  Google Scholar 

  26. H. E. Ganther and C. Ip, Thioredoxin reducides activity in rat liver is not affected by supranutritional levels of monomethy lated selenum in vivo and is inhibited only by high levels of selenium in vitro, J. Nutr. 131, 301–304 (2001).

    PubMed  CAS  Google Scholar 

  27. M. M. Bradford, A rapid and sensitive method for the quantiation of microgram quantities of protein utilizing the principle, Anal. Biochem. 72, 248–254 (1976).

    Article  PubMed  CAS  Google Scholar 

  28. D. J. C. Pappin, P. Hojrup, and A. J. Bleasby, Rapid identification of proteins by peptidemass fingerprinting, Curr. Biol. 3, 327–332 (1993).

    Article  PubMed  CAS  Google Scholar 

  29. R. S. Johnson, S. A. Martin, K. Birmann, et al., Novel fragmentation process of peptides by collision induced decomposition in a tandem mass spectrometer: differention of leucine and isoleucine, Anal. Chem. 59, 2621–2625 (1987).

    Article  PubMed  CAS  Google Scholar 

  30. P. Edman, Sequence determination, Mol. Biol. Biochem. Biophys. 8, 211–255 (1970).

    PubMed  CAS  Google Scholar 

  31. A. Shevchenko, M. Wilm, O. Vorm, et al., Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels, Anal. Chem. 68, 850–858 (1996).

    Article  PubMed  CAS  Google Scholar 

  32. R. Deutzmann, Structural characterization of proteins and peptides. Methods Mol Med 94, 269–297 (2004).

    PubMed  CAS  Google Scholar 

  33. I. Bikel, T. N. Pavlatos, and D. M. Livingston, Purification and subunit structure of mouse liver crystathionase, Arch. Biochem. Biophys. 186, 168–174 (1978).

    Article  PubMed  CAS  Google Scholar 

  34. W. R. Carroll, G. W. Stacy, and V. du Vigneaud, α-ketobutyric acid as production in the enzymatic cleavage of cystathionine, J. Biol. Chem. 180, 375–382 (1949).

    CAS  PubMed  Google Scholar 

  35. Y. Matsuo and D. M. Greenberg, A crystalline enzyme that cleaves homoserine and cystathionine. I. Isolation procedure and some physicochemical properties, J. Biol. Chem. 230, 545–560 (1958).

    PubMed  CAS  Google Scholar 

  36. B. J. Lee, S. G. Kang, and D. L. Hatfield, Transcription of Xenopus selenocysteine tRNA Ser (formerly designated opal suppressor phosphoserine tRNA) gene is directed by multiple 5′-extragenic regulatory elements. J. Biol. Chem. 264, 9696–9702 (1989).

    PubMed  CAS  Google Scholar 

  37. B. J. Lee, M. Rajagopalan, Y. S. Kim, et al., Selenocyteine tRNA [Ser]Sec gene is ubiquitous within the animal king dom, Mol. Cell. Biol. 10, 1940–1949 (1990).

    PubMed  CAS  Google Scholar 

  38. T. Mizutani, H. Kurata, and K. Yamada, Study of mammalian selenocysteyl-tRNA synthesis with [75Se]H Se−1, FEBS Lett. 289, 59–63 (1991).

    Article  PubMed  CAS  Google Scholar 

  39. T. Mizutani, H. Kurata, and K. Yamada, et al., Some properties of murine selenocysteine synthase, Biochem. J. 284, 827–834 (1992).

    PubMed  CAS  Google Scholar 

  40. H. E. Ganther, Metabolism of hydrogen selenide and methylated selenides, Adv. Nutr. Res. 2, 107–128 (1979).

    CAS  Google Scholar 

  41. T. A. Pascal, G. E. Gaull, N. G. Bertis, et al., Vitamin B6-responsive and-unresponsive cystathioninuria: two variant molecular forms, Science 190, 1209–1211 (1975).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okuno, T., Motobayashi, S., Ueno, H. et al. Identification of mouse selenomethionine α, γ-elimination enzyme. Biol Trace Elem Res 108, 245–257 (2005). https://doi.org/10.1385/BTER:108:1-3:245

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:108:1-3:245

Index Entries

Navigation