Skip to main content
Log in

Induction of DNA damage by free radicals generated either by organic or inorganic arsenic (AsIII, MMAIII, and DMAIII) in cultures of B and T lymphocytes

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of this work is based in the premise that inorganic arsenic (AsIII) and trivalentmethylated metabolites monomethylarsonous (MMAIII) and dimethylarsinous (DMAIII) participate in DNA damage through the generation of reactive oxygen species (ROS). We have utilized two lymphoblastic lines, Raji (B cells) and Jurkat (T cells), which were treated with the trivalent arsenic species (dose: 0–100 μM) and analyzed by two assays (comet assay and flow cytometry) in the determination of DNA damage and ROS effects in vivo. The results showed that the damage to the DNA and the generation of ROS are different in both cellular lines with respect to the dose of organic arsenic, and the order of damage is MMAIII>DMAIII>AsIII. This fact suggests that the DMAIII is not always the more cytotoxic intermediary xenobiotic, as has already been reported in another study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Brown, A. Foster, and J. Ostergren, Mineral surfaces and bioavailability of heavy metals: a molecular-scale perspective, Proc. Natl. Acad. Sci. USA 96, 3388–3395 (1999).

    Article  PubMed  CAS  Google Scholar 

  2. J. Azcue and J. Nriagu, Arsenic: historical perspectives, in Arsemic in the Environment. Part I: Cycling and Characterization, J. O. Nriagu,., Wiley, New York, pp. 1–15 (1994).

    Google Scholar 

  3. M. Bigg, D. Kalman, L. Moore, et al., Relationship of urinary arsenic intake estimates and a biomarker of effect, bladder cell microunuclei, Mutat. Res. 386, 185–195 (1997).

    Article  Google Scholar 

  4. R. A. Eisler, Review of arsenic hazards to plants and animals with emphasis on tishery and wildlife resources, in Arsenic in the Environment. Part II: Human Health and Ecosystem, J. O. Nriagu, ed., Wiley, New York, pp. 185–260 (1994).

    Google Scholar 

  5. W. Morton and D. Dunnette, Health effects of environmental arsenic, in Arsenic in the Environment. Part II: Human Health and Ecosystem, J. O. Nriagu, ed., Wiley, New York, pp. 17–34 (1994).

    Google Scholar 

  6. M. Moore, K. Harrington-Brock, and C. Doerr, Relative genotoxic potency of arsenic and its methylated metabolites, Mutat. Res. 386, 279–290 (1997).

    Article  PubMed  CAS  Google Scholar 

  7. S. Healy, E. Casarez, F. Ayala-Fierro, F. et al., Enzymatic methylation of arsenic compounds, Toxicol. Appl. Pharmacol. 148, 65–70 (1998).

    Article  PubMed  CAS  Google Scholar 

  8. J. Petrick, F. Ayala-Fierro, W. Cullen, et al., Monomethylarsonous acid (MMAIII) is more toxic than arsenite in Chang human hepatocytes, Toxicol. Appl. Pharmacol. 163, 203–207 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. J. Brown, K. Kitchin, and M. George, Dimethilarsenic acid treatment alters six different rat biochemical parameters: relevance to arsenic carcinogenesis, Teratog. Carcinog. Mutag. 17, 71–84 (1997).

    Article  CAS  Google Scholar 

  10. S. Ahmad, K. Kitchin, and W. Cullen, Arsenic species that cause release of iron from ferritin and generation of activated oxygen, Arch. Biochem. Biophys. 282(2), 195–202 (2000).

    Article  CAS  Google Scholar 

  11. I. Csanaky, B. Németi, and Z. Gregus, Dose-dependent biotransformation of arsenite in rats—not S-adenosylmethionine depletion impairs arsenic methylation at high dose, Toxicology 183, 77–91 (2003).

    Article  PubMed  CAS  Google Scholar 

  12. S. Nesnow, B. Roop, G. Lambert, et al., DNA damage by methylated trivalent arsenicals is mediated by reactive oxygen species, Chem. Res. Toxicol. 15, 1627–1634 (2002).

    Article  PubMed  CAS  Google Scholar 

  13. K. Yamanaka, W. Hasegawa, R. Sawmura, et al., Cellular response to oxidative damage in lung induced by administration of dimethylarsinic acid a major metabolite of inorganic arsenics, in mice. Toxicol. Appl. Pharmacol. 108, 205–213 (1991).

    Article  PubMed  CAS  Google Scholar 

  14. J. Liu, M. Kadiiska, Y. Liu, et al., Stress-related in mice treated with inorganic arsenicals, Toxicol. Sci. 61, 314–320 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. K. Kitchin, Recent advances in arsenic carcinogenesis: modes of action animal model systems, and methylated arsenic metabolites, Toxicol. Appl. Pharmacol. 172, 249–261 (2001).

    Article  PubMed  CAS  Google Scholar 

  16. N. Singh, M. McCoy, R. Tice, et al., A simple technique for quantitation of low levels of DNA damage in individual celle, Exp. Cell Res. 175, 184–191 (1988).

    Article  PubMed  CAS  Google Scholar 

  17. R. Tice, E. Agurell, D. Anderson, et al., Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing, Environ. Mol. Mutag. 35, 206–221 (2000).

    Article  CAS  Google Scholar 

  18. V. Goossens, J. Grooten, K. Vos, et al., Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity, Proc. Natl. Acad. Sci. USA 92, 8115–8119 (1995).

    Article  PubMed  CAS  Google Scholar 

  19. S. Buxser, G. Sawada, and T. Raub, Analytical and numerical techniques for evaluation of free radical damage in cultured cell using imaging cytometry and fluorescent indicators, Methods Enzymol. 300, 256–275 (1999).

    Article  PubMed  CAS  Google Scholar 

  20. A. Collins, S. Duthie, and U. Dobson, Direct enzymic detection of endogenous oxidative damage in human lymphocyte DNA, Carcinogenesis 14(9), 1733–1735 (1993).

    Article  PubMed  CAS  Google Scholar 

  21. R. Rasmussen and D. Menzel, Variation in arsenic-induced sister chromatid exchange in human lymphocytes and lymphoblastoid cell lines, Mutat. Res 386, 299–306 (1997).

    Article  PubMed  CAS  Google Scholar 

  22. D. Rickwood and J. Harris, Cell Biology Essential Techniques, Wiley, New York, pp. 38–66 (1996).

    Google Scholar 

  23. S. Duthie and P. McMillan, Uracil misincorporation in human DNA detected using single cell gel electrophoresis, Carcinogenesis 8, 1709–1714 (1997).

    Article  Google Scholar 

  24. C. Helma and M. Uhl, A public domain image-analysis program for the single-cell-gelelectrophoresis (comet) assay, Mutat. Res. 466, 9–15 (2000).

    PubMed  CAS  Google Scholar 

  25. M. Mass, A. Tennant, B. Roop, et al., Methylated trivalent arsenic ppecies are genotoxic, Chem. Res. Toxicol. 14, 355–361 (2001).

    Article  PubMed  CAS  Google Scholar 

  26. A. Tuck, S. Smith, and L. Larcom, Chronic lymphocytic leukemia lymphocytes lack the capacity to repair UVC-induced lesions, Mutat. Res. 459, 73–80 (2000).

    PubMed  CAS  Google Scholar 

  27. Y. Ito and D. Lipschitz, Assay of intracellular hydrogen peroxide generation in activated individual neutrophils by flow cytometry, In Methods in Oxidants and Antioxidants: Ultrastructure and Molecular Biology Protocols, D. Armstrong, ed., Humana, Totowa, NJ (2002).

    Google Scholar 

  28. F. Antunes, E. Cadenas, and U. Brunk, Apoptosis induced by exposure to a low steadystate concentration of H2O2 is a consequence of lysosomal rupture, Biochem. J. 356, 549–555 (2001).

    Article  PubMed  CAS  Google Scholar 

  29. C. Ferlini, R. Amelio, and G. Scambia, Apoptosis induced by ionizing radiation, in Subcellular Biochemistry, Vol. 36, Phospholipid Metabolism in Apoptosis, P. J. Quinn and V. E. Kagan, eds., Academic/Plenum, New York, (2002).

    Google Scholar 

  30. M. Styblo, L. Vega, D. Germolec, et al. Metabolism and toxicity of arsenicals in cultured cell, in Arsenic Exposure and Health Effects, W. Chappell, C. D. Aberharthy, and R. L. Calderon, eds., Elsevier Science, Amsterdam, pp. 311–323 (1999).

    Google Scholar 

  31. T. Schwerdtle, I. Walter, I. Mackiw, et al., Induction of oxidative DNA damage and its trivalent and pentavalent methylated metabolites in cultured cells and isolated DNA, Carcinogenesis 24(5), 967–974 (2003).

    Article  PubMed  CAS  Google Scholar 

  32. W. Cullen, B. Mc Bride, and J. Reglinski, The reduction of trimethylarsine oxide to trimethylarsine by thiols: a mechanistic model for the biological reduction of arsenicals, J. Inorg. Biochem. 21, 45–60 (1984).

    Article  CAS  Google Scholar 

  33. H. Yamauchi and B. Fowler, Toxicity and metabolism of inorganic and methylated arsenicals, in Arsenic in the Environment. Part II: Human Health and Ecosystem, J. O. Nriagu, ed., Wiley, New York, pp. 35–91 (1994).

    Google Scholar 

  34. M. Gorby, Arsenic in human medicine, in Arsenic in the Enviroment. Part I. Cyding and Characterization, J. O. Nriagu, ed., Wiley, New York, pp. 1–53 (1994).

    Google Scholar 

  35. P. Simeonova, S. Wang, W. Toriuma, et al., Arsenic mediates cell proliferation and gene expression in the bladder epithelium: association with activating protein-1 transactivation. Cancer Res. 60, 3445–3453 (2000).

    PubMed  CAS  Google Scholar 

  36. G. Jiang, Z. Gon, X. Li, et al., Interaction of trivalent arsenicals with metallothionein, Chem. Res. Toxicol. 16, 873–880 (2003).

    Article  PubMed  CAS  Google Scholar 

  37. Y. Shiobara, Y. Ogra, and K. Suzuki, Animal species difference in the uptake of dimethylarsinous acid (DMAIII) by red blood cells, Chem. Res. Toxicol. 14, 1446–1452 (2001).

    Article  PubMed  CAS  Google Scholar 

  38. T. Sakurai, W. Qu, M. Sakurai, et al., A major human arsenic metabolite, dimethylarsinic acid requires reduced glutathione to induce apoptosis, Chem. Res. Toxicol. 15, 629–637 (2001).

    Article  CAS  Google Scholar 

  39. K. Yamanaka, H. Hayashi, K. Kato, et al., Involvement of preferential formation of apurinic/apirimidinic site in dimethylarsenic-induced DNA strand breaks and DNA-protein crosslinks in cultured alveolar epithelial cell, Biochem. Biophys. Res. Commun. 207(1), 244–249 (1995).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez, S.E., del Razo, L.M. & Sanchez, J.L.M. Induction of DNA damage by free radicals generated either by organic or inorganic arsenic (AsIII, MMAIII, and DMAIII) in cultures of B and T lymphocytes. Biol Trace Elem Res 108, 115–126 (2005). https://doi.org/10.1385/BTER:108:1-3:115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:108:1-3:115

Index Entries

Navigation