Skip to main content
Log in

Levels of iron, zinc, and copper in aqueous humor, lens, and serum in nondiabetic and diabetic patients

Their relation to cataract

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate iron (Fe), zinc (Zn), and copper (Cu) levels of aqueous humor, lens, and serum in nondiabetics and diabetics and to determine the effects of diabetes on Fe, Zn, and Cu contents in the lens. Fe, Zn, and Cu contents of aqueous humor, lens, and serum samples of 19 patients (9 nondiabetic patients with a mean age of 62.3±5.4 yr, and 10 diabetic patients with a mean age of 59.5±5.9 yr) were analyzed by atomic absorption spectrometry using a prospective study design. The lens levels of Cu in diabetic patients were significantly higher compared with nondiabetic patients (p=0.02); however; there was no difference in the other elements (Zn, Fe; p=0.28, p=0.74, respectively). The levels of Fe, Zn, and Cu in the aqueous humor and serum of diabetic patients were not found to be statistically significant when compared to nondiabetics (p=0.46, p=0.11, p=0.18, and p=0.22, p=0.43, p=0.72, respectively). These results demonstrate that increased Cu content of the lens presumably has a greater association with the development of lens opacification in diabetics than Zn and Fe content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Kupfer, B. Underwood, and T. Gillen, Leading causes of visual impairment world-wide, in Principles and Practice of Ophthalmology Basic Science, D. M. Albert and F. A. Jacobiec, eds. W. B. Saunders, Philadelphia (1999).

    Google Scholar 

  2. A. J. Bron, J. Sparrow, N. A. P. Brown, et al., The lens in diabetes, Eye, 7, 260–275 (1993).

    PubMed  Google Scholar 

  3. J. J. Harding, Cataract, Biochemistry, Epidemiology and Pharmacology, Chapman & Hall, London (1991).

    Google Scholar 

  4. S. Fu, R. T. Dean, M. Southan, et al., The hydroxyl radical in lens nuclear cataractogenesis, J. Biol. Chem. 273(28), 603–609 (1998).

    Article  Google Scholar 

  5. G. Garner, M. J. Davies and R. J. W. Truscott, Formation of hydroxyl radicals in the human lens is related to the severity of nuclear cataract. Exp. Eye Res. 70, 81–88 (2000).

    Article  PubMed  CAS  Google Scholar 

  6. A. Spector and W. H. Garner, Hydrogen peroxide and human cataract, Exp. Eye Res. 33, 673–681 (1981).

    Article  PubMed  CAS  Google Scholar 

  7. R. J. W. Truscott and R. C. Augusteyn, Changes in human lens proteins during nuclear cataract formation, Exp. Eye Res. 24, 159–170 (1977).

    Article  PubMed  CAS  Google Scholar 

  8. J. Lin, Pathophysiology of cataracts: copper ion and peroxidation in diabetics, Jpn. J. Ophthalmol. 41, 130–137 (1997).

    Article  PubMed  CAS  Google Scholar 

  9. G. Gunduz, F. Gunduz, I. Yucel, et al, Levels of zinc and magnesium in senile and diabetic cataractous lenses, Biol. Trace Element Res. 95, 107–111 (2003).

    Article  Google Scholar 

  10. H. Lian, S. Li, X. Can, et al, Malonaldehyde, superoxide dismutase and human cataract, Yen Ko Huesh Pao 9, 186–189 (1993).

    CAS  Google Scholar 

  11. E. L. Lakomaa and P. Eklund, Trace element analysis of human cataractous lenses by neutron activation analysis and atomic absorption spectrometry with special reference to pseudo-exfoliation of the lens capsule, Ophthalmic Res. 10, 302–306 (1978).

    CAS  Google Scholar 

  12. C. S. Cook and M. C. McGahan, Copper concentration in cornea, iris, normal and cataractous lenses and intraocular fluid of vertebrates, Curr. Eye Res. 5, 69–77 (1986).

    PubMed  CAS  Google Scholar 

  13. J. Dawczynski, M. Blum, K. Winnerfeld et al, Increased content of zinc and iron in human cataractous lenses, Biol. Trace Element Res. 90, 15–23 (2002).

    Article  CAS  Google Scholar 

  14. V. Rasi, S. Constantini, and A. Moramarco, Inorganic element concentrations in cataractous human lenses, Ann Ophthalmol. 24, 459–464 (1992).

    PubMed  CAS  Google Scholar 

  15. A. Stanojevic, V. Hristil, and M. Cuperlovic, Macro and microelements in the cataractous eye lens, Ophthalmic Res. 19, 230–234 (1987).

    Google Scholar 

  16. V. K. Sivastava, N. Varshney, and D. C. Pandey, Role of trace elements in senile cataract. Acta Ophthalmol. 70, 839–841 (1992).

    Google Scholar 

  17. A. Swanson and A. W. Trusdale, Elemental analysis in normal and cataractous human lens tissue, Biochem. Biophys. Res. Commun. 45, 1488–1496 (1971).

    Article  PubMed  CAS  Google Scholar 

  18. R. Nath, S. K. Srivastava, and K. Singh, Copper levels in human cataractlens, Ind. J. Exp. Biol. 7, 25–28 (1969).

    CAS  Google Scholar 

  19. M. Balaji, K. Sasikala, and T. Ravindran, Copper levels in human mixed, nuclear brunescance, and posterior subcapsular cataract, Br. J. Ophthalmol. 76, 668–669 (1992).

    PubMed  CAS  Google Scholar 

  20. N. Shukla, J. K. Moitra, and R. C. Triverdi, Determination of lead, zinc, potassium, calcium, copper, and sodium in human cataract lenses, Sci. Total Environ. 181, 161–165 (1996).

    Article  PubMed  CAS  Google Scholar 

  21. P. Racz and A. Erdöhelyi, Cadmium, lead and copper concentrations in normal and senile cataractous human lenses, Ophthalmic Res. 20, 10–13 (1988).

    Article  PubMed  CAS  Google Scholar 

  22. O. Cekic, Copper, lead, cadmium and calcium in cataractous lenses, Ophthalmic Res. 30, 49–53 (1998).

    Article  PubMed  CAS  Google Scholar 

  23. D. Garland, Role of site specific, metal-catalyzed oxidation in lens ageing and cataract, Exp. Eye Res. 50, 677–682 (1990).

    Article  PubMed  CAS  Google Scholar 

  24. O. Cekic, Y. Bardak, Y. Totan, et al., Nickel, chromium, manganese, iron and aluminum levels in human cataractous and normal lenses, Ophthalmic Res. 31, 332–336 (1999).

    Article  PubMed  CAS  Google Scholar 

  25. A. D. Mooradian and J. E. Morley, Micronutrient status in diabetes mellitus, Am. J. Clin. Nutr. 45, 877–895, (1987).

    PubMed  CAS  Google Scholar 

  26. L. Oberley, Free radicals and diabetes, Free Radical Biol. Med. 5, 113–124 (1988).

    Article  CAS  Google Scholar 

  27. E. Mocchegianai, M. Boemi, P. Fumelli, et al., Zinc-dependent low thymic hormone level in type I diabetes, Diabetes 38, 932–937 (1989).

    Article  Google Scholar 

  28. H. M. Kingston and L. B. Jassie, Microwave energy for, acid decomposition at elevated temperatures and pressures using biological and botanical samples, Anal. Chem. 58, 2534–2541 (1986).

    Article  PubMed  CAS  Google Scholar 

  29. J. Aucoin, R. Blanchard, C. Billiot, et al., Trace metals in fish and sediments from Lake Boeuf Southeastern Louisiana, Microchem. J. 62, 299–307, (1999).

    Article  CAS  Google Scholar 

  30. T. J. Lyons, G. Silvestri, J. A. Dunn, et al. Role of glycation in modification of lens crystalline in diabetic and nondiabetic senile cataract, Diabetes 40, 1010–1015 (1991).

    Article  PubMed  CAS  Google Scholar 

  31. S. Franke, J. Dawczynski, M. Blum, et al., Levels of advanced glycation end products (AGEs) in human cataractous lenses, Exp. Clin. Endocrinol. Diabetes 108, A2-A3 (2000).

    Google Scholar 

  32. M. A. Babizhayev, A. I. Deyev, and L. F. Linberg Lipid peroxidation as a possible cause of cataract, Mech. Age Dev. 44, 68–89 (1988).

    Article  Google Scholar 

  33. Y. Obara, The oxidative stress in the catarct formation, Nippon, Ganka Gakkai Zasshi 99, 1303–1341 (1995).

    CAS  Google Scholar 

  34. D. Garland, Role of site-specific, metal-catalyzed oxidation in lens aging and cataract: a hypothesis, Exp. Eye Res. 50, 677–682 (1990).

    Article  PubMed  CAS  Google Scholar 

  35. T. J. C. Jacop and G. Duncan, The role of divalent cations in controlling amphibian lens membrane permeability: the mechanisms of toxic cataracts, Exp. Eye Res. 36, 595–606. (1983).

    Article  Google Scholar 

  36. T. Ookawara, N. Kawamura, Y. Kitakawa, et al., Site-specific and random fragmentation of Cu, Zn-superoxide dismutase by glycation reaction, J. Biol. Chem., 267, 18,505–18,510 (1992).

    CAS  Google Scholar 

  37. M. D. Argue, and B. J. Ortwerth, Activation of protein-bound copper ions during early glycation: study on two proteins, Arch. Biochem. Biophys. 420, 176–184 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aydin, E., Cumurcu, T., Özuĝurlu, F. et al. Levels of iron, zinc, and copper in aqueous humor, lens, and serum in nondiabetic and diabetic patients. Biol Trace Elem Res 108, 33–41 (2005). https://doi.org/10.1385/BTER:108:1-3:033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:108:1-3:033

Index Entries

Navigation