Skip to main content
Log in

Activity of glutathione peroxidase, glutathione reductase, and lipid peroxidation in erythrocytes in workers exposed to lead

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of this study was to estimate the activity of glutathione peroxidase (GPx), glutathione reductase (GR), and malondialdehyde (MDA) in erythrocytes in healthy male employees of zinc and lead steelworks who were occupationally exposed to lead over a long period of time (about 15 yr). Workers were divided into two subgroups: the first included employees with low exposure to lead (LL) (n=75) with blood lead level PbB=25–40 μg/dL and the second with high exposure to lead (HL) (n=62) with PbB over 40 μg/dL. Administration workers (n=35) with normal levels of PbB and zinc protoporphyrin in blood (ZPP) in blood were the control group. The activity of GPx significantly increased in LL when compared to the control group (p<0.001) and decreased when compared to the HL group (p=0.036). There were no significant changes in activity of GR in the study population. MDA erythrocyte concentration significantly increased in the HL group compared to the control (p=0.014) and to the LL group (p=0.024). For the people with low exposure to lead (PbB=25–40 μg/dL), the increase of activity of GPx by about 79% in erythrocytes prevented lipid peroxidation and it appears to be the adaptive mechanism against the toxic effect of lead. People with high exposure to lead (with PbB over 40 μg/dL) have shown an increase in MDA concentration in erythrocytes by about 91%, which seems to have resulted from reduced activity of GPx and the lack of increase in activity of GR in blood red cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. E. Ariza, G. N. Bijur, and M. V. Williams, Lead and mercury mutagenesis: role of H2O2, superoxide dismutase, and xanthine oxidase. Environ. Mol. Mutagen 31, 352–361 (1998).

    Article  PubMed  CAS  Google Scholar 

  2. E. Courtois, M. Marques, A. Barrientos, S. Casado, and A. Lopez-Farre, Lead-induced downregulation of soluble guanylate cyclase in isolated rat aortic segments mediated by reactive oxygen species and cyclooxygenase-2, J. Am. Soc. Nephrol. 14, 1464–1470, (2003).

    Article  PubMed  CAS  Google Scholar 

  3. J. L. Yang, L. C. Wang, C. Y. Chang, and T. Y. Liu, Singlet oxygen is the major species participating in the induction of DNA strand breakage and 8-hydroxydeoxyguanosine adduct by lead acetate, Environ. Mol. Mutagen. 33, 194–201 (1999).

    Article  PubMed  CAS  Google Scholar 

  4. Y. Ding, H. C. Gonick, and N. D. Vaziri, Lead promotes hydroxyl radical generation and lipid peroxidation in cultured aortic endothelial cells, Am. J. Hypertens. 13, 552–555 (2000).

    Article  PubMed  CAS  Google Scholar 

  5. V. N. Adonaylo and P. I. Oteiza, Lead intoxication: antioxidant defenses and oxidative damage in rat brain, Toxicology 135, 77–85 (1999).

    Article  PubMed  CAS  Google Scholar 

  6. H. Gurer, R. Neal, P. Yang, S. Oztezcan, and N. Ercal, Captopril as an antioxidant in lead-exposed Fisher 344 rats, Hum. Exp. Toxicol. 18, 27–32 (1999).

    Article  PubMed  CAS  Google Scholar 

  7. C. D. Upasani and R. Balaraman, Protective effect of Spirulina on lead induced deleterious changes in the lipid peroxidation and endogenous antioxidants in rats, Phytother. Res. 17, 330–334 (2003).

    Article  PubMed  CAS  Google Scholar 

  8. R. Sivaprasad, M. Nagaraj, and P. Varalakshmi, Combined efficacies of lipoic acid and meso-2,3-dimercaptosuccinic acid on lead-induced erythrocyte membrane lipid peroxidation and antioxidant status in rats, Hum. Exp. Toxicol. 22, 183–192 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. R. Sandhir and K. D. Gill, Effect of lead on lipid peroxidation in liver of rats, Biol. Trace Element Res. 48, 91–97 (1995).

    CAS  Google Scholar 

  10. Y. Ito, Y. Niiya, H. Kurita, S. Shima, and S. Sarai, Serum lipid peroxide level and blood superoxide dismutase activity in workers with occupational exposure to lead. Int. Arch. Occup. Environ. Health 56, 119–127 (1985).

    Article  PubMed  CAS  Google Scholar 

  11. C. D. Upasani, A. Khera, and R. Balaraman, Effect of lead with vitamin E, C, or Spirulina on malondialdehyde, conjugated dienes and hydroperoxides in rats, Indian J. Exp. Biol. 39, 70–74 (2001).

    PubMed  CAS  Google Scholar 

  12. N. Aykin-Burns, A. Laegeler, G. Kellogg, and N. Ercal, Oxidative effects of lead in young and adult Fisher 344 rats, Arch. Environ. Contam. Toxicol. 44, 417–420 (2003).

    Article  PubMed  CAS  Google Scholar 

  13. R. Neal, K. Cooper, G. Kellogg, H. Gurer, and N. Ercal, Effects of some sulfur-containing antioxidants on lead-exposed lenses, Free Radical Biol. Med. 26, 239–243 (1999).

    Article  CAS  Google Scholar 

  14. H. Gurer-Orhan, H. U. Sabir, and H. Ozgunes, Correlation between clinical indicators of lead poisoning and oxidative stress parameters in controls and lead-exposed workers, Toxicology 195, 147–154 (2004).

    Article  PubMed  CAS  Google Scholar 

  15. Y. Ding, H. C. Gonick, N. D. Vaziri, K. Liang, and L. Wei, Lead-induced hypertension. III. Increased hydroxyl radical production, Am. J. Hypertens. 14, 169–173 (2001).

    Article  PubMed  CAS  Google Scholar 

  16. N. D. Vaziri, Y. Ding, and Z. Ni, Nitric oxide synthase expression in the course of lead-induced hypertension, Hypertension 34, 558–562 (1999).

    PubMed  CAS  Google Scholar 

  17. N. Dursun, P. Dogan, and H. Donmez, Plasma and erythrocyte lipid peroxide levels in workers with occupational exposure to lead, Biol. Trace Element Res. 82, 29–34 (2001).

    Article  CAS  Google Scholar 

  18. M. C. Dominguez, E. Sole, C. Goni, and A. Ballabriga, Effect of aluminum and lead salts on lipid peroxidation and cell survival in human skin fibroblasts, Biol. Trace Element Res. 47, 57–67 (1995).

    CAS  Google Scholar 

  19. S. J. Yiin and T. H. Lin, Lead-catalyzed peroxidation of essential unsaturated fatty acid, Biol. Trace Element Res. 50, 167–172 (1995).

    CAS  Google Scholar 

  20. R. Sandhir, D. Julka, and K. D. Gill, Lipoperoxidative damage on lead exposure in rat brain and its implications on membrane bound enzymes, Pharmacol. Toxicol. 74, 66–71 (1994).

    PubMed  CAS  Google Scholar 

  21. X. B. Ye, H. Fu, J. L. Zhu, et al., A study on oxidative stress in lead-exposed workers, J. Toxicol. Environ. Health A 57, 161–172 (1999).

    Article  PubMed  CAS  Google Scholar 

  22. A. A. Hunaiti and M. Soud, Effect of lead concentration on the level of glutathione, glutathione S-transferase, reductase and peroxidase in human blood, Sci. Total Environ. 248, 45–50 (2000).

    Article  PubMed  CAS  Google Scholar 

  23. N. A. Lachant, A. Tomoda, and K. R. Tanaka, Inhibition of the pentose phsophate shunt by lead: a potential mechanism for hemolysis in lead poisoning, Blood 63, 518–524 (1984).

    PubMed  CAS  Google Scholar 

  24. H. Gurer, H. Ozgune, R. Neal, D. R. Spitz, and N. Ercal, Antioxidant effects of N-acetyl-cysteine and succimer in red blood cells from lead-exposed rats, Toxicology 128, 181–189 (1998).

    Article  PubMed  CAS  Google Scholar 

  25. J. Grabecki, T. Haduch, and H. Urbanowicz, Die einfachen Bestimmungsmethoden der delta-Aminolavulinsaure im Harn [Simple determination methods of delta-aminole-vulinic acid in urine], Int. Arch. Arbeitsmed. 23, 226–240 (1967).

    PubMed  CAS  Google Scholar 

  26. D. E. Paglia and W. N. Valentine, Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase, J. Lab. Clin. Med. 70, 158–169 (1967).

    PubMed  CAS  Google Scholar 

  27. R. Richterich, Chemia Kliniczna [Clinical Chemistry], Wydawnictwo Lekarskie PZWL [Medical Publishing PZWL], Warsaw (1971).

    Google Scholar 

  28. H. Ohkawa, N. Ohishi, and K. Yagi, Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction, Anal. Biochem. 95, 351–358 (1979).

    Article  PubMed  CAS  Google Scholar 

  29. E. Tatrai, Z. Kovacikova, A. Hudak, Z. Adamis, and G. Ungvary, Comparative in vitro toxicity of cadmium and lead on redox cycling in type II pneumocytes, J. Appl. Toxicol. 21, 479–483 (2001).

    Article  PubMed  CAS  Google Scholar 

  30. J. M. Hsu, Lead toxicity as related to glutathione metabolism, J. Nutr. 111, 26–33 (1981).

    PubMed  CAS  Google Scholar 

  31. M. A. El-Missiry, Prophylactic effect of melatonin on lead-induced inhibition of heme biosynthesis and deterioration of antioxidant systems in male rats, J. Biochem. Mol. Toxicol. 14, 57–62 (2000).

    Article  PubMed  CAS  Google Scholar 

  32. J. K. Howard, Interrelationships of glutathione reductase, 5-aminolevulinic acid dehydratase, and free sulfhydryl groups in the erythrocytes of normal and lead-exposed persons, J. Toxicol. Environ. Health. 4, 51–57 (1978).

    Article  PubMed  CAS  Google Scholar 

  33. T. D. Oberley, A. L. Friedman, R. Moser, and F. L. Siegel, Effects of lead administration on developing rat kidney. II. Functional, morphologic, and immunohistochemical studies. Toxicol. Appl. Pharmacol. 131, 94–107 (1995).

    Article  PubMed  CAS  Google Scholar 

  34. E. Sugawara, K. Nakamura, T. Miyake, A. Fukumura, and Y. Seki, Lipid peroxidation and concentration of glutathione in erythrocytes from workers exposed to lead, Br. J. Ind. Med. 48, 239–242 (1991).

    PubMed  CAS  Google Scholar 

  35. H. P. Monteiro, D. S. Abdalla, A. S. Arcuri, and E. J. Bechara, Oxygen toxicity related to exposure to lead, Clin. Chem. 31, 1673–1676 (1985).

    PubMed  CAS  Google Scholar 

  36. B. M. Solliway, A. Schaffer, H. Pratt, and S. Yannai, Effects of exposure to lead on selected biochemical and haematological variables, Pharmacol. Toxicol. 78, 18–22 (1996).

    Article  PubMed  CAS  Google Scholar 

  37. W. Wasowicz, J. Gromadzi'nska, and K. Rydzy'nski, Blood concentration of essential trace elements and heavy metals in workers exposed to lead and cadmium, Int. J. Occup. Med. Environ. Health 14, 223–229 (2001).

    PubMed  CAS  Google Scholar 

  38. S. Kasperczyk, A. Kasperczyk, E. Birkner, A. Ostałowska, and M. Dziwisz, Aktywność transferazy-S-glutationowej w erytrocytach u osób zawodowo narażonych na związki ołowiu. [Activity of glutathione S-transferase (GST) in erythrocytes in workers exposed to lead], Brom. Chem. Toksykol. 35, 173–178 (2002).

    CAS  Google Scholar 

  39. L. Dock, Induction of rat liver glutathione transferase isoenzyme 7-7 by lead nitrate, Biol. Trace Element Res. 21, 283–288 (1989).

    Article  CAS  Google Scholar 

  40. T. Suzuki, S. Morimura, M. B. Diccianni, et al., Activation of glutathione transferase P gene by lead requires glutathione transferase P enhancer I, J. Biol. Chem. 271, 1626–1632 (1996).

    Article  PubMed  CAS  Google Scholar 

  41. P. D. Whanger, Selenium in the treatment of heavy metal poisoning and chemical carcinogenesis, J. Trace Elements Electrolytes Health Dis. 6, 209–221 (1992).

    CAS  Google Scholar 

  42. A. I. Othman and M. A. El-Missiry, Role of selenium against lead toxicity in male rats, J. Biochem. Mol. Toxicol. 12, 345–349 (1998).

    Article  PubMed  CAS  Google Scholar 

  43. J. Onuki, M. H. Medeiros, E. J. Bechara, and P. Di-Mascio, 5-Aminolevulinic acid induces single-strand breaks in plasmid pBR322 DNA in the presence of Fe2+ ions, Biochim. Biophys. Acta 1225, 259–263 (1994).

    PubMed  CAS  Google Scholar 

  44. R. Neal, P. Yang, J. Fiechtl, D. Yildiz, H. Gurer, and N. Ercal, Pro-oxidant effects of delta-aminolevulinic acid (delta-ALA) on Chinese hamster ovary (CHO) cells, Toxicol. Lett. 91, 169–178 (1997).

    Article  PubMed  CAS  Google Scholar 

  45. E. J. Bechara, Oxidative stress in acute intermittent porphyria and lead poisoning may be triggered by 5-aminolevulinic acid, Braz. J. Med. Biol. Res. 29, 841–851 (1996).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sławomir Kasperczyk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasperczyk, S., Kasperczyk, A., Ostałwska, A. et al. Activity of glutathione peroxidase, glutathione reductase, and lipid peroxidation in erythrocytes in workers exposed to lead. Biol Trace Elem Res 102, 61–72 (2004). https://doi.org/10.1385/BTER:102:1-3:061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:102:1-3:061

Index Entries

Navigation