Skip to main content
Log in

Trace element status (Se, Cu, Zn) in healthy portuguese subjects of Lisbon population

A reference study

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Serum levels of selenium, copper, and zinc were systematically determined in healthy subjects of the Lisbon population. The sample consisted of 183 blood donors of both genders who were divided into two age groups: 20–44 and 45–70 yr of age; relationships with gender, age, the lipid profile, and tobacco consumption were investigated. In the female group, the intake of oral contraceptives and pregnancy were considered for the youngest women, and hormonal replacement therapy (HRT) was taken into account for the oldest ones. Serum concentrations of these elements were in the same range as those found for populations of other European countries. Differences between genders were observed for the three elements studied, with serum selenium and zinc concentrations higher in men and copper levels higher in women. Age-dependent differences were found for selenium: The oldest subjects (regardless gender) presented the highest concentrations of selenium in serum as further demonstrated by the positive correlation with age. In both pregnant and contraceptive-using women, copper was greatly increased, confirming the influence of estrogen status and/or oral contraceptive intake on increased serum copper levels. However, in postmenopausal women, HRT did not significantly affect serum copper levels. Selenium, copper, and zinc status were not different between normolipidemic and hyperlipidemic subjects for the same gender and age range, but selenium levels tended to increase with hyperlipidemia when considering the whole group of subjects. With respect to the lifestyle, higher serum zinc levels were found in tobacco-consuming men. Albumin serum levels were similar for all considered subgroups, except for the pregnant women, for whom a decrease in this parameter was observed. The present study allowed one to obtain reference values for this healthy group of population, which will serve for a comparative study with groups having pathological conditions, such as cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. H. Zargar, N. A. Shah, S. R. Masoodi, et al., Copper, zinc, and magnesium levels in non-insulin dependent diabetes mellitus, Postgrad. Med. J. 74, 665–668 (1998).

    PubMed  CAS  Google Scholar 

  2. C. B. Allan, G. M. Lacourciere, and T. C. Stadtman, Responsiveness of selenoproteins to dietary selenium, Annu. Rev. Nutr. 19, 1–16 (1999).

    Article  PubMed  CAS  Google Scholar 

  3. J. Nève and Y. Palmieri, First symposium on human health related aspects of selenium research in Europe, J. Trace Elements Med. Biol. 14, 116–121 (2000).

    Article  Google Scholar 

  4. F. Ursini, S. Heim, M. Kiess, et al., Dual function of the selenoprotein PHGPx during sperm maturation, Science 285(5432), 1393–1396 (1999).

    Article  PubMed  CAS  Google Scholar 

  5. M. C. Linder. Copper, in Present Knowledge in Nutrition, E. E. Ziegler and L. J. Filer, Jr., eds., ILSI, Washington, DC, pp. 307–319 (1996).

    Google Scholar 

  6. D. A. Schuschke, Dietary copper in the physiology of the microcirculation, J. Nutr. 127, 2274–2281 (1997).

    PubMed  CAS  Google Scholar 

  7. B. P. Yu, Cellular defenses against damage from reactive oxygen species, Physiol. Rev. 74, 139–162 (1994).

    PubMed  CAS  Google Scholar 

  8. D. B. Milne, Copper intake and assessment of copper status, Am. J. Clin. Nutr. 67, 1041S-1045S (1998).

    PubMed  CAS  Google Scholar 

  9. M. Hambidge, Human zinc deficiency, J. Nutr. 130, 1344S-1349S (2000).

    PubMed  CAS  Google Scholar 

  10. P. J. Fraker, L. E. King, T. Laakko, et al. The dynamic link between the integrity of the immune system and zinc status, J. Nutr. 130(5S Suppl.), 1399S-1406S (2000).

    PubMed  CAS  Google Scholar 

  11. L. E. Cauldfield, N. Zavaleta, and A. Figueiroa, Adding zinc to prenatal iron and folate supplements improves materanl and neonatal zinc status in a Peruvian population, Am. J. Clin. Nutr. 69(6), 1257–1263 (1999a)

    Google Scholar 

  12. L. E. Cauldfield, N. Zavaleta, A. Figueiroa, et al., Maternal zinc supplementation does not affect size at birth or pregnancy duration in Peru, J. Nutr. 129(8), 1563–1568 (1999b).

    Google Scholar 

  13. J. Versieck and R. Cornelis, Trace Elements in Plasma or Serum CRC, Boca Raton, FL (1989).

    Google Scholar 

  14. B. Lachili, H. Faure, J. Arnaud, et al., Blood micronutrients in Algeria, relationships with sex and age, Int. J. Vitam. Nutr. Res. 71, 111–116 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. I. Bureau, R. A. Anderson, J. Arnaud, et al., Trace mineral status in post menopausal women: impact of hormonal replacement therapy, J. Trace Elements Med. Biol. 16, 9–13 (2002).

    Article  CAS  Google Scholar 

  16. H. Robberecht and H. Deelstra, Factors influencing blood selenium concentration values: a literature review, J. Trace Elements Electrolytes Health Dis. 8, 129–143 (1994).

    CAS  Google Scholar 

  17. M. L. Pavão, V. Santos, A. Costa, et al., Selenium, copper and zinc in some Azorean populations, in New Aspects of Trace Element Research, M. Abdulla, M. Bost, S. Gamon, et al., eds., Smith-Gordon, London, Vol. 9, pp. 42–44 (1999).

    Google Scholar 

  18. J. E. Oldfield, Selenium World Atlas, Selenium-Tellurium Development Association, Grimbergen, Belgium (1999).

    Google Scholar 

  19. M. L. Pavão, C. Cordeiro, A. Costa, et al., Comparison of whole blood glutathione peroxidase activity, levels of selenium and lipid peroxidation in subjects of the fishing and rural communities of Rabo de Peixe village (S. Miguel Island, The Azores Archipelago, Portugal), Biol. Trace Elemetn Res. 92, 27–40 (2003).

    Article  Google Scholar 

  20. R. Van Cauwenberg, H. Robberecht, H. Deelstra, et al., Selenium, concentration in serum of healthy Greek adults, J. Trace Elements Electrolytes Health Dis. 8, 99–109 (1994).

    Google Scholar 

  21. M. O. Faruque, M. R. Khan, M. M. Rahman, et al., Relationship between smoking and antioxidant nutrient status, Br. J. Nutr. 73(4), 625–632 (1995).

    Article  PubMed  CAS  Google Scholar 

  22. A. M. Viegas-Crespo, M. L. Pavão, O. Paulo, et al., Trace element status (Se, Cu, Zn) and serum lipid profile in Portuguese subjects of San Miguel Island from Azores' arquipelag, J. Trace Elements Med. Biol. 14, 1–5, (2000).

    Article  CAS  Google Scholar 

  23. N. Jong, R. S. Gibson, C. D. Thomson, et al., Selenium and zinc status are suboptimal in a sample of older New Zealand women in a community based study, J. Nutr. 131(10), 2677–2684 (2001).

    PubMed  Google Scholar 

  24. J. T. Salonen, R. Salonen, H. Korpela, et al., Serum copper and the risk of acute myocardial infarction: a prospective population study in men in eastern Finland, Am. J. Epidemiol. 134(3), 268–276 (1991).

    PubMed  CAS  Google Scholar 

  25. A. M. Viegas-Crespo, J. Nève, M. L. Monteiro, et al., Selenium and lipid parameters in plasma of Portuguese subjects, J. Trace Elements Electrolytes Health Dis. 8(2), 119–122 (1994).

    CAS  Google Scholar 

  26. J. Nève, Selenium as a risk factor for cardiovascular diseases, J. Cardiovasc. Risk 3, 42–47 (1996).

    Article  PubMed  Google Scholar 

  27. T. R. Mahalingam, S. Viajayalakshmi, R. K. Prabhu, et al., Studies on some trace and minor elements in blood. A survey of the Kalpakkam (India) population. Part II: Reference values for plasma and red cells and correlation with coronary index, Biol. Trace Element Res. 57, 207–221 (1997).

    CAS  Google Scholar 

  28. E. Lopez, I. Villa Elizaga, J. I. Gost Garde, et al., Cardiovascular risk factors in relation to the serum concentrations of copper and zinc: epidemiological study on children and adolescents in the Spanish province of Navarra, Acta Paediat. 86, 248–253 (1997).

    Google Scholar 

  29. M. Iscra and W. Majewski, Copper and zinc concentrations and activities, of ceruloplasmin and superoxide dismutase in atherosclerosis obliterans, Biol. Trace Element Res. 73, 55–65 (2000).

    Article  Google Scholar 

  30. H. Mussalo-Rauhamaa, M. Kantola, K. Seppanen, et al., Trends in the concentrations of mercury, copper, zinc and selenium in inhabitants of north-eastern Finnish Lapland in 1982–1991. A pilot study, Arctic Med. Res. 55(2), 83–91 (1996).

    PubMed  CAS  Google Scholar 

  31. D. J. Malvy, A. Favier, H. Faure, et al., Effects of two years supplementation with natural antioxidants on vitamin and trace element status biomarkers: preliminary data of the SUVIMAX study, Cancer Detect. Prev. 25, 479–485 (2001).

    PubMed  CAS  Google Scholar 

  32. J. Nève, S. Chamart, and L. Molle, Optimization of a direct procedure for determination of selenium in plasma and erythrocytes using Zeeman-effect atomic, absorption spectroscopy, in Trace Element Analytical Chemistry in Medicine and Biology, P. Bratter and P. Schramel, eds., Walter de Gruyter, Berlin, pp. 349–358 (1987).

    Google Scholar 

  33. J. Nève, L. Molle, M. Hanocq, et al., Erythrocytes and plasma trace element levels in clinical assessments. Biol. Trace Element Res. 5, 75–79 (1983).

    Article  Google Scholar 

  34. F. C. Ballantyne, R. S. Clarck, H. S. Simpson, et al., HDL and LDL subfractions in myocardial infarction in control subjects, Metabolism 31, 433–437 (1982).

    Article  PubMed  CAS  Google Scholar 

  35. W. T. Friedewald, R. I. Levy, and D. S. Fredrickson, Estimation of the concentration of low-density lipoprotein cholesterol in plasma without use of the preparative ultracentrifuge, Clin. Chem. 18(6), 499–502 (1972).

    PubMed  CAS  Google Scholar 

  36. J. H. Zar, Biostatistical Analysis, 3rd ed., Prentice-Hall International, London (1996).

    Google Scholar 

  37. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation and treatment of high blood cholesterol in adults (Adult Treatment Panel III), JAMA 285, 2486–2497 (2001).

    Article  Google Scholar 

  38. A. M. Viegas-Crespo, I. Torres, M. L. Mira, et al., Selenium status in two populations from Madeira island with different dietary habits, in New Aspects of Trace Element Research, M. Abdulla, M. Bost, S. Gamon, et al., eds., smith-Gordon, London, pp. 89–91 (1999).

    Google Scholar 

  39. M. Navarro, H. Lopez, V. Perez, et al., Serum selenium levels during normal pregnancy in healthy Spanish women, Sci. Total Environ. 186(3), 237–242 (1996)

    Article  PubMed  CAS  Google Scholar 

  40. N. A. Golubkina and G. Alfthan, Selenium status of pregnant women and newborns in the former Soviet Union, Biol. Trace Element Res. 89(1), 13–23 (2002).

    Article  CAS  Google Scholar 

  41. W.-C. Wang, O. Heinonein, A.-L. Makela, et al., Serum selenium, zinc and copper in Swedish and finnish Orenters. A comparative study, Analyst 120, 837–840 (1995).

    Article  PubMed  CAS  Google Scholar 

  42. M. K. Horwitt, C. C. Harvey, and C. R. Dahm, Relationship between levels of blood lipids, vitamins C, A and E, serum copper compounds, and urinary excretions of tryptophan metabolities in women taking oral contraceptive therapy, Am. J. Clin. Nutr. 4, 403–412 (1975).

    Google Scholar 

  43. F. Martín-Lagos, Navarro-Alarcón, C. Terrés-Martos, et al., Zinc and copper concentrations in serum from Spanish women during pregnancy, Biol. Trace Element Res. 61, 61–70 (1998).

    Google Scholar 

  44. H. Reyes, M. E. Báez, M. C. Gonzaléz, et al., Selenium, zinc and plasma copper levels in intrahepatic cholestasis of pregnancy, in normal pregnancies and in healthy individuals in Chile, J. Hepatol. 32, 542–549 (2000).

    Article  PubMed  CAS  Google Scholar 

  45. A. Wakatsuki, Y. Okatini, N. Ikenoue, et al., Different effects of oral conjugated equine estrogen and transdermal estrogen replacement therapy on size and oxidative susceptibility of low-density lipoprotein particles in postmenopausal women, Circulation 106, 1771–1776 (2002).

    Article  PubMed  CAS  Google Scholar 

  46. O. A. Lapido, Nutrition in pregnancy: mineral and vitamin supplements, Am. J. Clin. Nutr. 72, 280S-290S (2000).

    Google Scholar 

  47. N. Jong, A. B. Ampong Romano, and R. S. Gilbson, Zinc and iron status during pregnancy of Filipino women. Asia Pacific, J. Clin. Nutr. 11, 186–193 (2002).

    Article  Google Scholar 

  48. Y. Ito, K. Suzuki, R. Sasaaki, et al., Mortality rates from cancer or all causes and SOD activity level and Zn/Cu ratio in peripheral blood: population based follow-up study, J. Epidemiol. 12, 14–21 (2002).

    PubMed  Google Scholar 

  49. J. T. Salonen, R. Salonen, K. Seppaenen, et al., Relationship of serum selenium and antioxidants to plasma lipoproteins, platelet aggregability and prevalent ischaemic heart disease in Eastern Finnish men, Atherosclerosis 70, 155–165 (1988).

    Article  PubMed  CAS  Google Scholar 

  50. V. Ducros, F. Laporte, N. Belin, et al., Selenium determination in human plasma lipoprotein fractions by mass spectrometry analysis, J. Inorg. Biochem. 81, 105–109 (2000).

    Article  PubMed  CAS  Google Scholar 

  51. J. Nève, New approaches to assess selenium status and requirement, Nutr. Rev. 58, 363–369 (2000).

    Article  PubMed  Google Scholar 

  52. L. Zhong, E. S. J. Arnér, J. Ljung, et al., Rat and calf thioredoxin redutase are homologous to glutathione redutase with a carboxyl-terminal elongation containing a conserved catalytically active penultimate selenocysteine residue, J. Biol. Chem. 273, 8581–8591 (1998).

    Article  PubMed  CAS  Google Scholar 

  53. K. Klipstein-Grobusch, D. E. Grobbee, J. F. Koster, et al., Serum caeruloplasmin as a coronary risk factor in elderly: the Rotterdam Study, Br. J. Nutr. 81, 139–144 (1999).

    PubMed  CAS  Google Scholar 

  54. M. A. Dubick and C. L. Keen, Influence of nicotine on tissue trace element concentrations and tissue antioxidant defense, Biol. Trace Element Res. 31(2), 97–109 (1991).

    Article  CAS  Google Scholar 

  55. M. T. Leon-Espinosa de los Monteros, B. Gil Extremera, A. Maldonado Martin, et al., Zinc and chronic obstructive pulmonary disease, Rev. Clin. Exp. 200(12), 649–653 (2000).

    CAS  Google Scholar 

  56. A. Kocyigit, O. Erel, and S. Gur, Effects of tobacco smoking on plasma selenium, zinc, copper and iron concentrations and related antioxidative enzyme activities, Clin. Biochem. 34(8), 629–633 (2001).

    Article  PubMed  CAS  Google Scholar 

  57. A. M. Preston, Cigarette smoking-nutritional implications, Prog. Food. Nutr. Sci. 15(4), 183–217 (1991).

    PubMed  CAS  Google Scholar 

  58. T. L. Croxton, G. G. Weinmann, R. M. Senior, et al., Future research directions in chronic obstructive pulmonary disease, Am. J. Respir. Crit. Care Med. 165(6), 838–844 (2002).

    PubMed  Google Scholar 

  59. P. J. Fraker, L. E. King, T. Laakko, et al., The dynamic link between the integrity of the immune system and zinc status, J. Nutr. 130(5S Suppl.), 1399S-1406S (2000).

    PubMed  CAS  Google Scholar 

  60. E. Bourdon, N. Loreau, and D. Blache, Glucose and free radicals impair the antioxidant properties of serum albumin, FASEB J. 13, 233–244 (1999).

    PubMed  CAS  Google Scholar 

  61. W. Dröge, Aging-related changes in the thiol/disulfide redox state: implications for the use of thiol antioxidants, Exp. Gerontol. 37, 1333–1345 (2002).

    Article  PubMed  Google Scholar 

  62. B. Halliwell and J. M. Gutteridge, Free Radicals in Biology and Medicine, Claredon, Oxford (1995).

    Google Scholar 

  63. M. K. Cha and I. H. Kim, Glutathione-linked thiol peroxidase activity of human serum albumin: a possible antioxidant role of serum albumin in blood plasma, Biochem. Biophys. Res. Commun. 222, 619–625 (1996).

    Article  PubMed  CAS  Google Scholar 

  64. F. Kouoh, B. Gressier, M. Luyckx, et al., Antioxidant properties of albumin; effect on oxidative metabolism of human neutrophil granulocytes. Farmaco 54, 695–699 (1999).

    Article  PubMed  CAS  Google Scholar 

  65. A. B. Gorina, La Clínica y el Laboratorio, Marin Editorial, Barcelona (1981).

    Google Scholar 

  66. E. Sarandol, M. Dirican, and Z. Serdar, Oxidizability of apolipoprotein B-containing lipoproteins, levels of lipid peroxidation products and antioxidants in normal pregnancy, Arch. Gynecol. Obstet. [Epub ahead of print] (2003).

  67. B. Pignatelli, C.-Q. Li, P. Boffetta, et al., Nitrated and oxidized plasma proteins in smokers and lung cancer patients, Cancer Res. 61, 778–784 (2001).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopes, P.A., Santos, M.C., Vicente, L. et al. Trace element status (Se, Cu, Zn) in healthy portuguese subjects of Lisbon population. Biol Trace Elem Res 101, 1–17 (2004). https://doi.org/10.1385/BTER:101:1:01

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:101:1:01

Index Entries

Navigation