Skip to main content
Log in

Simultaneous production of nisin and lactic acid from cheese whey

Optimization of fermentation conditions through statistically based experimental designs

  • Session 3—Bioprocessing, Including Separations
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A biorefinery process that utilizes cheese whey as substrate to simultaneously produce nisin, a natural food preservative, and lactic acid, a raw material for biopolymer production, was studied. The conditions for nisin biosynthesis and lactic acid coproduction by Lactococcus lactis subsp. lactis (ATCC 11454) in a whey-based medium were optimized using statistically based experimental designs. A Plackett-Burman design was applied to screen seven parameters for significant factors for the production of nisin and lactic acid. Nutrient supplements, including yeast extract, MgSO4, and KH2PO4, were found to be the significant factors affecting nisin and lactic acid formation. As a follow-up, a central-composite design was applied to optimize these factors. Second-order polynomial models were developed to quantify the relationship between nisin and lactic acid production and the variables. The optimal values of these variables were also determined. Finally, a verification experiment was performed to confirm the optimal values that were predicted by the models. The experimented results agreed well with the model prediction, giving a similar production of 19.3 g/L of lactic acid and 92.9 mg/L of nisin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gonzales, S. M. I. (1996), Bioresour. Technol. 57, 1–11.

    Article  Google Scholar 

  2. Yang, S. T. and Silva, E. M. (1995), J. Dairy Sci. 78, 2541–2562.

    Article  PubMed  CAS  Google Scholar 

  3. Warwaha, S. S. and Kennedy, J. F. (1988), Int. J. Food Sci. Technol. 23, 323–336.

    Google Scholar 

  4. Broughton, J. B. (1990), Food Technol. 44, 100–117.

    Google Scholar 

  5. Montville, T. J. and Chen, Y. (1998), Appl. Microbio. Biotechnol. 50, 511–519.

    Article  CAS  Google Scholar 

  6. Cleveland, J., Thomas, J., Montville, J. T., Nes, F. I., and Chikindas, L. M. (2001) Int. J. Food Microbiol. 71, 1–20.

    Article  PubMed  CAS  Google Scholar 

  7. Parente, E. and Ricciardi, A. (1999), Appl. Microbiol. Biotechnol. 52, 628–638.

    Article  PubMed  CAS  Google Scholar 

  8. Sablon, E., Contreras, B., and Vandamme, E. (2000), Adv. Biochem. Eng./Biotechnol. 68, 21–59.

    CAS  Google Scholar 

  9. Food and Drug Administration. (2001), GRAS Notice No. GRN 000065.

  10. Sloan, A. E. (1998), Food Technol. 52, 37–44.

    Google Scholar 

  11. Jack, R. W., Tagg, J. R., and Ray, B. (1995), Microbiol. Rev. 59, 171–200.

    PubMed  CAS  Google Scholar 

  12. Datta, R. and Tsai, S. P. (1997), In: Fuels and Chemicals from Biomass (ACS Symposium Series 666), Saha, B. C. and Woodward, J., eds., American Chhemical Society, Washington, DC, pp. 224–236.

    Google Scholar 

  13. Nelson, P. G. and Lorenzo, P. (2001), Biotechnol. Lett. 23, 609–612.

    Article  Google Scholar 

  14. Penna, T. C. V. and Moraes, D. A. (2002), Appl. Biochem. Biotechnol. 98–100, 775–789.

    Article  PubMed  Google Scholar 

  15. Shimizu, H., Mizuguchi, T., Tanaka, E., and Shioya, S. (1999), Appl. Environ. Microbiol. 65, 3134–3141.

    PubMed  CAS  Google Scholar 

  16. Saccani, G., Gherardi, S., Trifir&ograve, A., Soresi, B. C., Calza, M., and Freddi, C. (1995), J. Chromatogr. A 706, 395–403.

    Article  CAS  Google Scholar 

  17. Greasham, L. R. and Herber, K. W. (1997), in Applied Microbial Physiology, 1st Ed., Rhodes, P. M. and Stanbury, P. F., eds., Oxford University Press, New York, NY, 53–74.

    Google Scholar 

  18. Montgomery, D. C. (1997), Design and Analysis of Experiments, 4th Ed. John Wiley & Sons, New York, NY.

    MATH  Google Scholar 

  19. Kim, W. S., Hall, R. J., and Dunn, N. W. (1997), Appl. Microbiol. Biotechnol. 48, 449–453.

    Article  PubMed  CAS  Google Scholar 

  20. De Vuyst, L. (1995), J. Appl. Bacteriol. 78, 28–33.

    CAS  Google Scholar 

  21. De Vuyst, L. and Vandamme, E. J. (1993), Appl. Microbiol. Biotechnol., 40, 17–22.

    Article  Google Scholar 

  22. Meghrous, J., Huo, M., Quittelier, M., and Petitdemange, H. (1992), Res. Microbiol. 143, 879–890.

    Article  PubMed  CAS  Google Scholar 

  23. Kim, W. S., Hall, R. J., and Dunn, N. W. (1998), Appl. Microbiol. Biotechnol. 50, 429–433.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shulin Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Liu, Y., Liao, W. et al. Simultaneous production of nisin and lactic acid from cheese whey. Appl Biochem Biotechnol 114, 627–638 (2004). https://doi.org/10.1385/ABAB:114:1-3:627

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:114:1-3:627

Index Entries

Navigation