Skip to main content
Log in

Optimization of β-carotene production from synthetic medium by Blakeslea trispora

A mathematical modeling

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of inoculum, pH, carbon and nitrogen source, natural oils, fatty acids, antioxidant, and precursors on β-carotene production by Blakeslea trispora in shake-flask culture was investigated. The highest concentration of β-carotene was obtained in the medium (pH 7.0) inoculated with one loop of each culture. Sucrose, glycerol, cornmeal, soy protein acid hydrolysate, and distiller's solubles did not improve the production of β-carotene. By contrast, glucose, corn steep liquor, antioxidant, olive oil, soybean oil, cottonseed oil, oleic and linoleic acids, and kerosene significantly increased the β-carotene production. A central composite design was employed to determine the maximum β-carotene production at optimum values for the process variables (linoleic acid, kerosene, and antioxidant). The fit of the model was found to be good. Linoleic acid, kerosene, and antioxidant had a strong linear effect on β-carotene production. The concentration of β-carotene was significantly affected by linoleic acid-kerosene and linoleic acid-antioxidant interactions as well as by the negative quadratic effects of these variables. The interaction between kerosene and antioxidant had no significant linear effect. The maximum β-carotene concentration (2.88 g/L) was obtained at concentrations of 17.15 g/L of linoleic acid, 39.25 g/L of kerosene, and 9.04 g/L of antioxidant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, S. W., Seo, W. T., and Park, Y. H. (1997) Biotechnol. Lett., 19(6), 561, 562.

    Article  CAS  MathSciNet  Google Scholar 

  2. Ciegler, A., Nelson, G. E. N., and Hall, H. H. (1963), Appl. Microbiol. 11, 128–131.

    PubMed  CAS  Google Scholar 

  3. Atkinson B., and Mavituna, F. (1985) Biochemical Engineering and Biotechnology Handbook, Macmillan, London.

    Google Scholar 

  4. Shlomai, P., Ben-Amotz, A., and Margalith, P. (1991), Appl. Microbiol. Biotechnol. 34, 458–462.

    Article  CAS  Google Scholar 

  5. Costa, I., Martelli, H. L., DaSilva, I. M., and Pomeroy, D., (1987), Biotechnol. Lett. 9(5), 373–375.

    Article  CAS  Google Scholar 

  6. Yun, J. W., Kim, J. H., and Yoo, Y. J. (1990), Biotechnol. Lett. 12(12), 905–910.

    Article  CAS  Google Scholar 

  7. Martelli, H. L., DaSilva, I. M., Souza, N. O., and Pomeroy, D. (1992), World J. Microbiol. Biotechnol. 8, 635–637.

    Article  CAS  Google Scholar 

  8. Dholakia, J. N. and Modi, V. V. (1982), Eur. J. Appl. Microbiol. Biotechnol. 15, 33–35.

    Article  CAS  Google Scholar 

  9. Martelli, H. L., DaSilva, I. M., Souza, N. O., and Pomeroy, D. (1990), Biotechnol. Lett 12(3), 207, 208.

    Article  Google Scholar 

  10. Ciegler, A., Lagoda, A. A., Sohns, V. E., Hall, H. H., and Jackson, R. W. (1963), Biotechnol. Bioeng. 5, 109–121.

    Article  Google Scholar 

  11. Lampila, L. E., Wallen, S. E., Bullerman, L. B., and Lowry, S. R. (1985), Lebensm. Wiss. u. Technol. 18, 366–369.

    CAS  Google Scholar 

  12. Lampila, L. E., Wallen, S. E., Bullerman, L. B., and Lowry, S. R. (1985), Lebensm. Wiss. u. Technol. 18, 370–373.

    CAS  Google Scholar 

  13. Ciegler, A., Arnold, M., and Anderson, R. F., (1959), J. Agric. Food Chem. 7, 94–98.

    CAS  Google Scholar 

  14. Ciegler, A., Arnold, M., and Anderson, R. F. (1959), J. Agric. Food Chem. 7, 98–101.

    CAS  Google Scholar 

  15. Roukas, T. and Mantzouridou, F. (2001), Appl. Biochem. Biotechnol. 90, 37–45.

    Article  PubMed  CAS  Google Scholar 

  16. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. (1956), Anal. Chem. 28, 350–356.

    Article  CAS  Google Scholar 

  17. Paul, G. C., Kent, C. A., and Thomas, C. R. (1992), Trans. IChemE 70, 13–20.

    CAS  Google Scholar 

  18. Neter, J., Kutner, M. H., Nachtsheim, C. J. and Wasserman, W. (1996), Applied Linear Statistical Models, 4th ed. McGraw-Hill, Chicago.

    Google Scholar 

  19. Kim, S. W., Seo, W. T., and Park, Y. H. (1996), Biotechnol. Lett. 18(11), 1287–1290.

    Article  CAS  Google Scholar 

  20. Roukas, T., Lazarides, H., and Kotzekidou, P. (1991), Milchwissenschaft 46, 438–441.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Triantafyllos Roukasa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mantzouridou, F., Roukasa, T., Kotzekidoua, P. et al. Optimization of β-carotene production from synthetic medium by Blakeslea trispora . Appl Biochem Biotechnol 101, 153–175 (2002). https://doi.org/10.1385/ABAB:101:2:153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:101:2:153

Index Entries

Navigation