Skip to main content

Assay for Three-Way Interaction of Protein Phosphatase-1 (Glc7) With Regulatory Subunits Plus Phosphatase Inhibitor-2

  • Protocol
Book cover Protein Phosphatase Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 365))

  • 1668 Accesses

Abstract

A method is described using yeast conjugation to assay the interactions of a protein phosphatase-1 (PP1) inhibitor protein with holoenzymes formed in situ by expression of regulatory subunit fusion proteins that recruit endogenous Glc7, the yeast ortholog of PP1. Mutations in the canonical recognition motif VxF used to bind PP1 (Glc7) allow for analysis of direct from indirect (three-way) interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fischer, E. H. and Brautigan, D. L. (1982) A Phosphatase by any other name: from prosthetic group removing enzyme to phosphorylase phosphatase. Trends Biochem. Sci. 7, 3–4.

    Article  CAS  Google Scholar 

  2. Kato, K. and Bishop, J. S. (1972) Glycogen synthetase-δ phosphatase. I. Some new properties of the partially purified enzyme from rabbit skeletal muscle. J. Biol. Chem. 247, 7420–7429.

    PubMed  CAS  Google Scholar 

  3. Larner, J. (1973) Covalent and noncovalent control of glycogen synthesis. Ann. NY Acad. Sci. 210, 207–214.

    Article  PubMed  CAS  Google Scholar 

  4. Abe, N. and Tsuiki, S. (1974) Studies on glycogen synthase δ phosphatase of rat liver: multiple nature. Biochim. Biophys. Acta. 350, 383–391

    PubMed  CAS  Google Scholar 

  5. Stalmans, W., De Wulf, H., Hue, L., and Hers, H. G. (1974) The sequential inactivation of glycogen phosphorylase and activation of glycogen synthetase in liver after the administration of glucose to mice and rats. The mechanism of the hepatic threshold to glucose. Eur. J. Biochem. 41, 117–134.

    Article  PubMed  CAS  Google Scholar 

  6. Nakai, C. and Thomas, J. A. (1974) Properties of a phosphoprotein phosphatase from bovine heart with activity on glycogen synthase, phosphorylase, and histone. J. Biol. Chem. 249, 6459–6467.

    PubMed  CAS  Google Scholar 

  7. Kikuchi, K., Tamura, S., Hiraga, A., and Tsuiki, S. (1977) Glycogen synthase phosphatase of rat liver. Its separation from phosphorylase phosphatase on DE-52 columns. Biochem. Biophys. Res. Commun. 75, 29–37.

    Article  PubMed  CAS  Google Scholar 

  8. Brandt, H., Killilea, S. D., and Lee, E. Y. C. (1974) Activation of phosphorylase phosphatase by a novel procedure: evidence for a regulatory mechanism involving the release of a catalytic subunit from enxyme-inhibitor complex(es) of higher molecular weight. Biochem. Biophys. Res. Commun. 61, 598–604.

    Article  PubMed  CAS  Google Scholar 

  9. Goris, J. and Merlevede, W. (1972) Effect of urea on the active and inactive forms of liver phosphorylase phosphatase separated by gel filtration. Arch. Int. Physiol. Biochim. 80, 967–969

    PubMed  CAS  Google Scholar 

  10. Kato, K., Kobayashi, M., and Sato, S. (1974) Multiple molecular forms of phosphoprotein phosphatase. II. Dissociation and activation of phosphorylase phosphatase from rabbit skeletal muscle. Biochim. Biophys. Acta 371, 89–101.

    PubMed  CAS  Google Scholar 

  11. Huang, F. L. and Glinsmann, W. H. (1975) Inactivation of rabbit muscle phosphorylase phosphatase by cyclic AMP-dependent kinase. Proc. Natl. Acad. Sci. USA 72, 3004–3008.

    Article  PubMed  CAS  Google Scholar 

  12. Gratecos, D., Detwiler, T. C., Hurd, S., and Fischer, E. H. (1977) Rabbit muscle phosphorylase phosphatase. 1. Purification and chemical properties. Biochemistry 16, 4812–4817.

    Article  PubMed  CAS  Google Scholar 

  13. Killilea, S. D., Mellgren, R. L., Aylward, J. H., Metieh, M. E., and Lee, E. Y. (1979) Liver protein phosphatases: studies of the presumptive native forms of phosphorylase phosphatase activity in liver extracts and their dissociation to a catalytic subunit of Mr 35,000. Arch. Biochem. Biophys. 193, 130–139.

    Article  PubMed  CAS  Google Scholar 

  14. Huang, F. L. and Glinsmann, W. H. (1976) Separation and characterization of two phosphorylase phosphatase inhibitors from rabbit skeletal muscle. Eur. J. Biochem. 70, 419–426.

    Article  PubMed  CAS  Google Scholar 

  15. Ingebritsen, T.S., Foulkes, J. G., and Cohen, P. (1980) The broad specificity protein phosphatase from mammalian liver. Separation of the Mr 35 000 catalytic subunit into two distinct enzymes. FEBS Lett. 119, 9–15.

    Article  PubMed  CAS  Google Scholar 

  16. Ingebritsen, T. S. and Cohen, P. (1983) The protein phosphatases involved in cellular regulation. 1. Classification and substrate specificities. Eur. J. Biochem. 132, 255–261.

    Article  PubMed  CAS  Google Scholar 

  17. Imaoka, T., Imazu, M., Usui, H., Kinohara, N., and Takeda, M. (1983). Resolution and reassociation of three distinct components from pig heart phosphoprotein phosphatase. J. Biol. Chem. 258, 1526–1535.

    PubMed  CAS  Google Scholar 

  18. Tamura, S., Kikuchi, H., Kikuchi, K., Hiraga, A., and Tsuiki, S. (1980) Purification and subunit structure of a high-molecular-weight phosphoprotein phosphatase (phosphatase II) from rat liver. Eur. J. Biochem. 104, 347–355

    Article  PubMed  CAS  Google Scholar 

  19. Pato, M. D. and Adelstein, R. S. (1983) Purification and characterization of a multisubunit phosphatase from turkey gizzard smooth muscle. The effect of calmodulin binding to myosin light chain kinase on dephosphorylation. J. Biol. Chem. 258, 7047–7054.

    PubMed  CAS  Google Scholar 

  20. Pato, M. D., Adelstein, R. S., Crouch, D., Safer, B., Ingebritsen, T.S., and Cohen, P. (1983) The protein phosphatases involved in cellular regulation. 4. Classification of two homogeneous myosin light chain phosphatases from smooth muscle as protein phosphatase-2A1 and 2C, and a homogeneous protein phosphatase from reticulocytes active on protein synthesis initiation factor eIF-2 as protein phosphatase-2A2. Eur. J. Biochem. 132, 283–287

    Article  PubMed  CAS  Google Scholar 

  21. Ballou, L. M. and Fischer, E. H. (1986) Phosphoprotein Phosphatases, in The Enzymes, (Boyer, P. D. and Krebs, E. G., eds.), Academic, London, pp. 311–361.

    Google Scholar 

  22. Stralfors, P., Hiraga, A., and Cohen, P. (1985) The protein phosphatases involved in cellular regulation. Purification and characterisation of the glycogen-bound form of protein phosphatase-1 from rabbit skeletal muscle. Eur. J. Biochem. 149, 295–303

    Article  PubMed  CAS  Google Scholar 

  23. Alessi, D., MacDougall, L. K., Sola, M.M., Ikebe, M., and Cohen, P. (1992) The control of protein phosphatase-1 by targetting subunits. The major myosin phosphatase in avian smooth muscle is a novel form of protein phosphatase-1. Eur. J. Biochem. 210, 1023–1035

    Article  PubMed  CAS  Google Scholar 

  24. Shirazi, A., Iizuka, K., Fadden, P., et al. (1994) Purification and characterization of the mammalian myosin light chain phosphatase holoenzyme. The differential effects of the holoenzyme and its subunits on smooth muscle. J. Biol. Chem. 269, 31,598–31,606

    PubMed  CAS  Google Scholar 

  25. Shimizu, H., Ito, M., Miyahara, M., et al. (1994) Characterization of the myosin-binding subunit of smooth muscle myosin phosphatase. J. Biol. Chem. 269, 30,407–30,411.

    PubMed  CAS  Google Scholar 

  26. Ito, M., Nakano, T., Erdodi, F., and Hartshorne, D. J. (2004) Myosin phosphatase: structure, regulation and function. Mol. Cell. Biochem. 259, 197–209.

    Article  PubMed  CAS  Google Scholar 

  27. Cohen, P. T. (2002) Protein phosphatase 1-targeted in many directions. J. Cell Sci. 115, 241–256.

    PubMed  CAS  Google Scholar 

  28. Ceulemans, H. and Bollen, M. (2004) Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol Rev. 84, 1–39

    Article  PubMed  CAS  Google Scholar 

  29. Eto, M., Senba, S., Morita, F., and Yazawa, M. (1997) Molecular cloning of a novel phosphorylation-dependent inhibitory protein of protein phosphatase-1 (CPI17) in smooth muscle: its specific localization in smooth muscle. FEBS Lett. 410, 356–360.

    Article  PubMed  CAS  Google Scholar 

  30. Senba, S., Eto, M., and Yazawa, M. (1999) Identification of trimeric myosin phosphatase (PP1M) as a target for a novel PKC-potentiated protein phosphatase-1 inhibitory protein (CPI-17) in porcine aorta smooth muscle. J. Biochem (Tokyo) 125, 354–362.

    CAS  Google Scholar 

  31. Eto, M., Kitazawa, T., and Brautigan, D. L. (2004) Phosphoprotein inhibitor CPI-17 specificity depends on allosteric regulation of protein phosphatase-1 by regulatory subunits. Proc. Natl. Acad. Sci. USA 101, 8888–8893.

    Article  PubMed  CAS  Google Scholar 

  32. Connor, J. H., Weiser, D. C., Li, S., Hallenbeck, J. M., and Shenolikar, S. (2001) Growth arrest and DNA damage-inducible protein GADD34 assembles a novel signaling complex containing protein phosphatase 1 and inhibitor 1. Mol. Cell. Biol. 21, 6841–6850.

    Article  PubMed  CAS  Google Scholar 

  33. Eto, M., Elliott, E., Prickett, T. D., and Brautigan, D. L. (2002) Inhibitor-2 regulates protein phosphatase-1 complexed with NimA-related kinase to induce centrosome separation. J. Biol. Chem. 277, 44,013–44,020

    Article  PubMed  CAS  Google Scholar 

  34. Terry-Lorenzo, R. T., Elliott, E., Weiser, D. C., Prickett, T. D., Brautigan, D. L., and Shenolikar, S. (2002) Neurabins recruit protein phosphatase-1 and inhibitor-2 to the actin cytoskeleton. J. Biol. Chem. 277, 46,535–46,543

    Article  PubMed  CAS  Google Scholar 

  35. Wang, H. and Brautigan, D. L. (2002) A novel transmembrane Ser/Thr kinase complexes with protein phosphatase-1 and inhibitor-2. J Biol. Chem. 277, 49,605–49,612

    Article  PubMed  CAS  Google Scholar 

  36. Feng, Z.H., Wilson, S. E., Peng, Z. Y., Schlender, K. K., Reimann, E. M., and Trumbly, R. J. (1991) The yeast GLC7 gene required for glycogen accumulation encodes a type 1 protein phosphatase. J. Biol. Chem. 266, 23,796–23,801

    PubMed  CAS  Google Scholar 

  37. Dignam, S. S., Koushik, J. S., Wang, J., Trumbly, R. J., Schlender, K. K., Lee, E. Y., and Reimann, E. M. (1998) Purification and characterization of type 1 protein phosphatase from Saccharomyces cerevisiae: effect of the R73C mutation. Arch. Biochem. Biophys. 357, 58–66.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Eto, M., Brautigan, D.L. (2007). Assay for Three-Way Interaction of Protein Phosphatase-1 (Glc7) With Regulatory Subunits Plus Phosphatase Inhibitor-2. In: Moorhead, G. (eds) Protein Phosphatase Protocols. Methods in Molecular Biology, vol 365. Springer, Totowa, NJ. https://doi.org/10.1385/1-59745-267-X:197

Download citation

  • DOI: https://doi.org/10.1385/1-59745-267-X:197

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-1-58829-711-2

  • Online ISBN: 978-1-59745-267-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics