Skip to main content

Prediction of Protein–Protein Interaction Based on Structure

  • Protocol
Protein Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 340))

  • 1572 Accesses

Abstract

A great challenge in the proteomics and structural genomics era is to predict protein structure and function from sequence, including the identification of biological partners. The development of a procedure to construct position-specific scoring matrices for the prediction and identification of sequences with putative significant affinity faces this challenge. The local and web applications used for sequence and structure search, sequence alignment, protein modeling, molecule edition and modification, and scoring matrices construction are described in detail. The methodology is based on the information contained in structural databases and takes into account the subtle conformational and sequence details that characterize different structures within a family. Using the matrices, the protein sequence databases can be easily scanned to locate putative partners of biological significance. The success of this methodology opens the way for the prediction of protein-protein interaction at genome scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lo, C. L., Chothia, C., and Janin, J. (1999) The atomic structure of protein-protein recognition sites. J. Mol. Biol. 285, 2177–2198.

    Article  Google Scholar 

  2. Valdar, W. S. and Thornton, J. M. (2001) Protein-protein interfaces: analysis of amino acid conservation in homodimers. Proteins 42, 108–124.

    Article  PubMed  CAS  Google Scholar 

  3. Jones, S. and Thornton, J. M. (1997) Analysis of protein-protein interaction sites using surface patches. J. Mol. Biol. 272, 121–132.

    Article  PubMed  CAS  Google Scholar 

  4. Jones, S. and Thornton, J. M. (1997) Prediction of protein-protein interaction sites using patch analysis. J. Mol. Biol. 272, 133–143.

    Article  PubMed  CAS  Google Scholar 

  5. Aloy, P., Querol, E., Aviles, F. X., and Sternberg, M. J. (2001) Automated structure-based prediction of functional sites in proteins: applications to assessing the validity of inheriting protein function from homology in genome annotation and to protein docking. J. Mol. Biol. 311, 395–408.

    Article  PubMed  CAS  Google Scholar 

  6. Stein, A., Russell, R. B., and Aloy, P. (2005) 3did: interacting protein domains of known three-dimensional structure. Nucleic Acids Res. 33, D413–D417.

    Article  PubMed  CAS  Google Scholar 

  7. Aloy, P., Bottcher, B., Ceulemans, H., Leutwein, C., Mellwig, C., Fischer, S., et al. (2004) Structure-based assembly of protein complexes in yeast. Science 303, 2026–2029.

    Article  PubMed  CAS  Google Scholar 

  8. Brannetti, B., Via, A., Cestra, G., Cesareni, G., and Helmer-Citterich, M. (2000)SH3-SPOT: an algorithm to predict preferred ligands to different members of the SH3 gene family. J. Mol. Biol. 298, 313–328.

    Article  PubMed  CAS  Google Scholar 

  9. Wollacott, A. M. and Desjarlais, J. R. (2001) Virtual interaction profiles of proteins. J. Mol. Biol. 313, 317–342.

    Article  PubMed  CAS  Google Scholar 

  10. Meng, E. C., Gschwend, D. A., Blaney, J. M., and Kuntz, I. D. (1993) Orientational sampling and rigid-body minimization in molecular docking. Proteins 17, 266–278.

    Article  PubMed  CAS  Google Scholar 

  11. Lichtarge, O. and Sowa, M. E. (2002) Evolutionary predictions of binding surfaces and interactions. Curr. Opin. Struct. Biol. 12, 21–27.

    Article  PubMed  CAS  Google Scholar 

  12. Bogan, A. A. and Thorn, K. S. (1998) Anatomy of hot spots in protein interfaces. J. Mol. Biol. 280, 1–9.

    Article  PubMed  CAS  Google Scholar 

  13. Schreiber, G. and Fersht, A. R. (1995) Energetics of protein-protein interactions:analysis of the barnase-barstar interface by single mutations and double mutant cycles. J. Mol. Biol. 248, 478–486.

    PubMed  CAS  Google Scholar 

  14. Janin, J. and Chothia, C. (1990) The structure of protein-protein recognition sites. J. Biol. Chem. 265, 16027–16030.

    PubMed  CAS  Google Scholar 

  15. Janin, J. (1995) Principles of protein-protein recognition from structure to thermodynamics. Biochimie 77, 497–505.

    Article  PubMed  CAS  Google Scholar 

  16. Jones, S. and Thornton, J. M. (1996) Principles of protein-protein interactions. Proc. Natl. Acad. Sci. USA 93, 13–20.

    Article  PubMed  CAS  Google Scholar 

  17. Tsai, C. J., Lin, S. L., Wolfson, H. J., and Nussinov, R. (1996) A dataset of protein-protein interfaces generated with a sequence-order-independent comparison technique. J. Mol. Biol. 260, 604–620.

    Article  PubMed  CAS  Google Scholar 

  18. Tsai, C. S. (2002) Molecular modelling: protein modelling, in An Introduction to Computational Biochemistry (Han L., ed.), John Wiley & Sons, Inc., New York, pp. 315–342.

    Chapter  Google Scholar 

  19. Letunic, I., Copley, R. R., Schmidt, S., Ciccarelli, F. D., Doerks, T., Schultz, J., et al. (2004) SMART 4.0: towards genomic data integration. Nucleic Acids Res. 32,D142–D144.

    Article  PubMed  CAS  Google Scholar 

  20. Guex, N. and Peitsch, M. C. (1997) SWISS-MODEL and the Swiss-PdbViewer:an environment for comparative protein modeling. Electrophoresis 18, 2714–2723.

    Article  PubMed  CAS  Google Scholar 

  21. van Gunsteren, W. F. and Mark, A. E. (1992) Prediction of the activity and stability effects of site-directed mutagenesis on a protein core. J. Mol. Biol. 227, 389–395.

    Article  PubMed  Google Scholar 

  22. Northey, J. G., Di Nardo, A. A., and Davidson, A. R. (2002) Hydrophobic core packing in the SH3 domain folding transition state. Nat. Struct. Biol. 9, 126–130.

    Article  PubMed  CAS  Google Scholar 

  23. Larson, S. M. and Davidson, A. R. (2000) The identification of conserved interactions within the SH3 domain by alignment of sequences and structures. Protein Sci. 9, 2170–2180.

    Article  PubMed  CAS  Google Scholar 

  24. Fernandez-Ballester, G., Blanes-Mira, C., and Serrano, L. (2004) The tryptophan switch: changing ligand-binding specificity from type I to type II in SH3 domains. J. Mol. Biol. 335, 619–629.

    Article  PubMed  CAS  Google Scholar 

  25. Cesareni, G., Panni, S., Nardelli, G., and Castagnoli, L. (2002) Can we infer peptide recognition specificity mediated by SH3 domains? FEBS Lett. 513, 38–44.

    Article  PubMed  CAS  Google Scholar 

  26. Hilbert, M., Bohm, G., and Jaenicke, R. (1993) Structural relationships of homologous proteins as a fundamental principle in homology modeling. Proteins 17,138–151.

    Article  PubMed  CAS  Google Scholar 

  27. Chinea, G., Padron, G., Hooft, R. W., Sander, C., and Vriend, G. (1995) The use of position-specific rotamers in model building by homology. Proteins 23, 415–421.

    Article  PubMed  CAS  Google Scholar 

  28. Bonneau, R. and Baker, D. (2001) Ab initio protein structure prediction: progress and prospects. Annu. Rev. Biophys. Biomol. Struct. 30, 173–189.

    Article  PubMed  CAS  Google Scholar 

  29. Bryant, S. H. and Altschul, S. F. (1995) Statistics of sequence-structure threading. Curr. Opin. Struct. Biol. 5, 236–244.

    Article  PubMed  CAS  Google Scholar 

  30. Murphy, K. P. and Freire, E. (1992) Thermodynamics of structural stability and cooperative folding behavior in proteins. Adv. Protein Chem. 43, 313–361.

    Article  PubMed  CAS  Google Scholar 

  31. Pace, C. N., Shirley, B. A., McNutt, M., and Gajiwala, K. (1996) Forces contributing to the conformational stability of proteins. FASEB J. 10, 75–83.

    PubMed  CAS  Google Scholar 

  32. Sippl, M. J. (1995) Knowledge-based potentials for proteins. Curr. Opin. Struct.Biol. 5, 229–235.

    Article  PubMed  CAS  Google Scholar 

  33. Topham, C. M., Srinivasan, N., and Blundell, T. L. (1997) Prediction of the stability of protein mutants based on structural environment-dependent amino acid substitution and propensity tables. Protein Eng. 10, 7–21.

    Article  PubMed  CAS  Google Scholar 

  34. Bordo, D. and Argos, P. (1991) Suggestions for &quote;safe&quote; residue substitutions in site-directed mutagenesis. J. Mol. Biol. 217, 721–729.

    Article  PubMed  CAS  Google Scholar 

  35. Prevost, M., Wodak, S. J., Tidor, B., and Karplus, M. (1991) Contribution of the hydrophobic effect to protein stability: analysis based on simulations of the Ile-96–Ala mutation in barnase. Proc. Natl. Acad. Sci. USA 88, 10880–10884.

    Article  PubMed  CAS  Google Scholar 

  36. Pitera, J. W. and Kollman, P. A. (2000) Exhaustive mutagenesis in silico:multicoordinate free energy calculations on proteins and peptides. Proteins 41,385–397.

    Article  PubMed  CAS  Google Scholar 

  37. Guerois, R., Nielsen, J. E., and Serrano, L. (2002) Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J. Mol.Biol. 320, 369–387.

    Article  PubMed  CAS  Google Scholar 

  38. Kiel, C., Serrano, L., and Herrmann, C. (2004) A detailed thermodynamic analysis of ras/effector complex interfaces. J. Mol. Biol. 340, 1039–1058.

    Article  PubMed  CAS  Google Scholar 

  39. Vijayakumar, M., Wong, K. Y., Schreiber, G., Fersht, A. R., Szabo, A., and Zhou, H. X. (1998) Electrostatic enhancement of diffusion-controlled protein-protein association: comparison of theory and experiment on barnase and barstar. J. Mol.Biol. 278, 1015–1024.

    Article  PubMed  CAS  Google Scholar 

  40. Kuntz, I. D., Blaney, J. M., Oatley, S. J., Langridge, R., and Ferrin, T. E. (1982) A geometric approach to macromolecule-ligand interactions. J. Mol. Biol. 161,269–288.

    Article  PubMed  CAS  Google Scholar 

  41. Morris, G. M., Goodsell, D. S., Huey, R., and Olson, A. J. (1996) Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. J. Comput. Aided Mol. Des. 10, 293–304.

    Article  PubMed  CAS  Google Scholar 

  42. Jones, G., Willett, P., Glen, R. C., Leach, A. R., and Taylor, R. (1997) Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267, 727–748.

    Article  PubMed  CAS  Google Scholar 

  43. Ewing, T. J., Makino, S., Skillman, A. G., and Kuntz, I. D. (2001) DOCK 4.0:search strategies for automated molecular docking of flexible molecule databases. J. Comput. Aided Mol. Des. 15, 411–428.

    Article  PubMed  CAS  Google Scholar 

  44. Rarey, M., Kramer, B., Lengauer, T., and Klebe, G. (1996) A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 261, 470–489.

    Article  PubMed  CAS  Google Scholar 

  45. Bohm, H. J. (1992) The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J. Comput. Aided Mol. Des. 6, 61–78.

    Article  PubMed  CAS  Google Scholar 

  46. Bohacek, R. S. and McMartin, C. (1997) Modern computational chemistry and drug discovery: structure generating programs. Curr. Opin. Chem. Biol. 1, 157–161.

    Article  PubMed  CAS  Google Scholar 

  47. Jones, D. and Thornton, J. (1993) Protein fold recognition. J. Comput. Aided Mol.Des. 7, 439–456.

    Article  PubMed  CAS  Google Scholar 

  48. Gattiker, A., Gasteiger, E., and Bairoch, A. (2002) ScanProsite: a reference implementation of a PROSITE scanning tool. Appl. Bioinformatics 1, 107–108.

    PubMed  CAS  Google Scholar 

  49. Tong A. H., Drees B., Nardelli G., Bader G. D., Brannetti B., Castagnoli L., et al. (2002) A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 295, 321–324.

    Article  PubMed  CAS  Google Scholar 

  50. Beltrao, P. and Serrano, L. (2005) Comparative genomics and disorder prediction identity biologically relevant SH3 protein interactions. PLoS Comput. Biol. 1, e26.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Fernandez-Ballester, G., Serrano, L. (2006). Prediction of Protein–Protein Interaction Based on Structure. In: Guerois, R., de la Paz, M.L. (eds) Protein Design. Methods in Molecular Biology, vol 340. Humana Press. https://doi.org/10.1385/1-59745-116-9:207

Download citation

  • DOI: https://doi.org/10.1385/1-59745-116-9:207

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-585-9

  • Online ISBN: 978-1-59745-116-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics