Skip to main content

Consensus Design as a Tool for Engineering Repeat Proteins

  • Protocol
Protein Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 340))

Abstract

Repeat proteins were first identified because of their unusual primary structure, in which short amino acid sequences, typically between 20 and 40 residues, are repeated in tandem, often many times. After identification at the sequence level, the three-dimensional structures of representatives from several classes (e.g., ankyrin, tetratricopeptide, leucine rich repeat) have been solved. The structures indeed reveal unusual, nonglobular structures, a linear “string” of the tandem motifs. Perhaps because of the large surface area that is presented as a consequence of such elongated structures, repeat domains are often involved in mediating protein–protein interactions. Here we describe methods of consensus-based design and engineering of repeat proteins. We pay particular attention to the attributes of repeat proteins that make them well-suited to such approaches. In addition, we discuss practical issues related to producing and characterizing such designed proteins. We use the tetratricopeptide repeat, which is well-studied in our group, to illustrate many ideas, but also draw comparisons to other work on repeat proteins, where relevant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Regan, L. and DeGrado, W. F. (1988) Characterization of a helical protein designed from first principles. Science 241, 976–978.

    Article  PubMed  CAS  Google Scholar 

  2. Hecht, M. H., Richardson, J. S., Richardson, D. C., and Ogden, R. C. (1990) De novo design, expression, and characterization of felix: a four-helix bundle protein of native-like sequence. Science 249, 884–891.

    Article  PubMed  CAS  Google Scholar 

  3. Quinn, T. P., Tweedy, N. B., Williams, R. W., Richardson, J. S., and Richardson, D. C. (1994) Betadoublet: de novo design, synthesis, and characterization of a beta-sandwich protein. Proc. Natl. Acad. Sci. USA 91, 8747–8751.

    Article  PubMed  CAS  Google Scholar 

  4. Kamtekar, S., Schiffer, J. M., Xiong, H., Babik, J. M., and Hecht, M. H. (1993) Protein design by binary patterning of polar and nonpolar amino acids. Science 262, 1680–1685.

    Article  PubMed  CAS  Google Scholar 

  5. Dahiyat, B. I. and Mayo, S. L. (1997) De novo protein design: fully automated sequence selection. Science 278, 82–87.

    Article  PubMed  CAS  Google Scholar 

  6. Harbury, P. B., Plecs, J. J., Tidor, B., Alber, T., and Kim, P. S. (1998) Highresolution protein design with backbone freedom. Science 282, 1462–1467.

    Article  PubMed  CAS  Google Scholar 

  7. Looger, L. L., Dwyer, M. A., Smith, J. J., and Hellinga, H. W. (2003) Computational design of receptor and sensor proteins with novel functions. Nature 423, 185–190.

    Article  PubMed  CAS  Google Scholar 

  8. Kuhlman, B., Dantas, G., Ireton, G. C., Varani, G., Stoddard, B. L., and Baker, D. (2003) Design of a novel globular protein fold with atomic-level accuracy. Science 302, 1364–1368.

    Article  PubMed  CAS  Google Scholar 

  9. Krizek, B. A., Amann, B. T., Kilfoil, V. J., Merkle, D. L., and Berg, J. M. (1991) A consensus zinc finger peptide: Design, high affinity metal binding, a ph-dependent structure, and a His to Cys sequence variant. J. Am. Chem. Soc. 113, 4518–4523.

    Article  CAS  Google Scholar 

  10. Steipe, B., Schiller, B., Pluckthun, A., and Steinbacher, S. (1994) Sequence statistics reliably predict stabilizing mutations in a protein domain. J. Mol. Biol. 240, 188–192.

    Article  PubMed  CAS  Google Scholar 

  11. Lehmann, M., Kostrewa, D., Wyss, M., et al. (2000) From DNA sequence prove to improved functionality: using protein sequence comparisons to rapidly design a thermostable consensus phytase. Protein Eng. 13, 49–57.

    Article  PubMed  CAS  Google Scholar 

  12. Rath, A. and Davidson, A. R. (2000) The design of a hyperstable mutant of the abp1p sh3 domain by sequence alignment analysis. Protein Sci. 9, 2457–2469.

    Article  PubMed  CAS  Google Scholar 

  13. Main, E. R., Xiong, Y., Cocco, M. J., D’Andrea, L., and Regan, L. (2003) Design of stable alpha-helical arrays from an idealized TPR motif. Structure (Camb.) 11, 497–508.

    Article  CAS  Google Scholar 

  14. Stumpp, M. T., Forrer, P., Binz, H. K., and Pluckthun, A. (2003) Designing repeat proteins: modular leucine-rich repeat protein libraries based on the mammalian ribonuclease inhibitor family. J. Mol. Biol. 332, 471–487.

    Article  PubMed  CAS  Google Scholar 

  15. Mosavi, L. K., Minor, D. L., Jr., and Peng, Z. Y. (2002) Consensus-derived structural determinants of the ankyrin repeat motif. Proc. Natl. Acad. Sci. USA 99, 16029–16034.

    Article  PubMed  CAS  Google Scholar 

  16. Kohl, A., Binz, H. K., Forrer, P., Stumpp, M. T., Pluckthun, A., and Grutter, M. G. (2003) Crystal structure of a consensus ankyrin repeat protein. Proc. Natl. Acad. Sci. USA 100, 1700–1705.

    Article  PubMed  CAS  Google Scholar 

  17. Andrade, M. A., Perez-Iratxeta, C., and Ponting, C. P. (2001) Protein repeats: structures, functions, and evolution. J. Struct. Biol. 134, 117–131.

    Article  PubMed  CAS  Google Scholar 

  18. Kobe, B. and Kajava, A. V. (2000) When protein folding is simplified to protein coiling: the continuum of solenoid protein structures. Trends Biochem. Sci. 25, 509–515.

    Article  PubMed  CAS  Google Scholar 

  19. Sonnhammer, E. L., Eddy, S. R., Birney, E., Bateman, A., and Durbin, R. (1998) Nucleic Acids Res. 26, 320–322.

    Article  PubMed  CAS  Google Scholar 

  20. Schultz, J., Milpetz, F., Bork, P., and Ponting, C. P. (1998) Proc. Natl. Acad. Sci. USA 95, 5857–5864.

    Article  PubMed  CAS  Google Scholar 

  21. Castiglone Morelli, M. A., Stier, G., Gibson, T., et al. (1995) The KH module has an alpha beta fold. FEBS Lett. 358, 193–198.

    Article  PubMed  CAS  Google Scholar 

  22. Musco, G., Stier, G., Joseph, C., et al. (1996) Three-dimensional structure and stability of the KH domain: molecular insights into the fragile X syndrome. Cell 85, 237–245.

    Article  PubMed  CAS  Google Scholar 

  23. Gribskov, M., McLachlan, A. D., and Eisenberg, D. (1987) Profile analysis: detection of distantly related proteins. Proc. Natl. Acad. Sci. USA 84, 4355–4358.

    Article  PubMed  CAS  Google Scholar 

  24. Eddy, S. R. (1998) Profile hidden markov models. Bioinformatics 14, 755–763.

    Article  PubMed  CAS  Google Scholar 

  25. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.

    Article  PubMed  CAS  Google Scholar 

  26. D’Andrea, L. D. and Regan, L. (2003) TPR proteins: the versatile helix. Trends Biochem. Sci. 28, 655–662.

    Article  PubMed  Google Scholar 

  27. Scheufler, C., Brinker, A., Bourenkov, G., et al. (2000) Structure of TPR domainpeptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell. 101, 199–210.

    Article  PubMed  CAS  Google Scholar 

  28. Binz, H. K., Amstutz, P., Kohl, A., et al. (2004) High-affinity binders selected from designed ankyrin repeat protein libraries. Nat. Biotechnol. 22, 575–582.

    Article  PubMed  CAS  Google Scholar 

  29. Magliery, T. J. and Regan, L. Beyond consensus: statistical free energies reveal hidden interactions in the design of a TPR motif. (2004) J. Mol. Biol. 343, 731–745.

    Article  PubMed  CAS  Google Scholar 

  30. Mosavi, L. K. and Peng, Z. Y. (2003) Structure-based substitutions for increased solubility of a designed protein. Protein Eng. 16, 739–745.

    Article  PubMed  CAS  Google Scholar 

  31. Vita, C., Drakopoulou, E., Vizzavona, J., et al. (1999) Rational engineering of a miniprotein that reproduces the core of the CD4 site interacting with HIV-1 envelope glycoprotein. Proc. Natl. Acad. Sci. USA 96, 13091–13096.

    Article  PubMed  CAS  Google Scholar 

  32. Domingues, H., Cregut, D., Sebald, W., Oschkinat, H., and Serrano, L. (1999) Rational design of a GCN4-derived mimetic of interleukin-4. Nat. Struct. Biol. 6, 652–656.

    Article  PubMed  CAS  Google Scholar 

  33. Chin, J. W. and Schepartz, A. (2001) Concerted evolution of structure and function in a miniature protein. J. Am. Chem. Soc. 123, 2929–2930.

    Article  PubMed  CAS  Google Scholar 

  34. Cortajarena, A. L., Kajander, T., Pan, W., Cocco, M. J., and Regan, L. (2004) Protein design to understand peptide ligand recognition by tetratricopeptide repeat proteins. Protein Eng. Des. Sel. 17, 399–409.

    Article  PubMed  CAS  Google Scholar 

  35. Chin, J. W. and Schepartz, A. (2001) Design and evolution of a miniature Bcl-2 binding protein. Angew Chem. Int. Ed. Engl. 40, 3806–3809.

    Article  PubMed  CAS  Google Scholar 

  36. Binz, H. K., Stumpp, M. T., Forrer, P., Amstutz, P., and Pluckthun, A. (2003) Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J. Mol. Biol. 332, 489–503.

    Article  PubMed  CAS  Google Scholar 

  37. Takahashi, T. T., Austin, R. J., and Roberts, R. W. (2003) mRNA display: ligand discovery, interaction analysis and beyond. Trends Biochem. Sci. 28, 159–165.

    Article  PubMed  CAS  Google Scholar 

  38. Smith, G. P. (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317.

    Article  PubMed  CAS  Google Scholar 

  39. Barbas, C. F. I., Burton, D. R., Scott, J. K., and Silvermann, G. J. (Eds.) (2001) Phage Display, A Laboratory Manual. Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY.

    Google Scholar 

  40. Lockless, S. W., and Ranganathan, R. (1999) Evolutionarily conserved pathways of energetic connectivity in protein families. Science 286, 295–299.

    Article  PubMed  CAS  Google Scholar 

  41. Magliery, T. J., and Regan, L. (2005) Sequence variation in ligand binding sites in proteins. BMC Bioinformatics 6, 240.

    Article  PubMed  Google Scholar 

  42. Altschul, S. F., Madden, T. L., Schaffer, A. A., et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs Nucleic Acids Res. 25, 3389–3402.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Kajander, T., Cortajarena, A.L., Regan, L. (2006). Consensus Design as a Tool for Engineering Repeat Proteins. In: Guerois, R., de la Paz, M.L. (eds) Protein Design. Methods in Molecular Biology, vol 340. Humana Press. https://doi.org/10.1385/1-59745-116-9:151

Download citation

  • DOI: https://doi.org/10.1385/1-59745-116-9:151

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-585-9

  • Online ISBN: 978-1-59745-116-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics