Skip to main content

DNA Methyltransferase Probing of DNA-Protein Interactions

  • Protocol
Gene Mapping, Discovery, and Expression

Part of the book series: Methods in Molecular Biology ((MIMB,volume 338))

Abstract

Effective methods of probing chromatin structure without disrupting DNA-protein interactions and associations are necessary for creating an accurate picture of chromatin and its processes in vivo. Expression of cytidine-5 DNA methyltransferases (C5 DMTases) in Saccharomyces cerevisiae provides a powerful noninvasive method of assaying relative DNA accessibility in chromatin. DNA MTases are occluded from protein-associated DNA based on the strength and span of the DNA-protein interaction. Ectopic regulation of C5 DMTase expression systems allows for minimal disruption of yeast physiology. Methylated sites are detected by bisulfite genomic sequencing, which leads to a positive signal corresponding to modified cytidine residues. High-resolution C5 DMTases with dinucleotide recognition specificity are shown to provide sufficient coverage to map interactions spanning a relatively short distance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kladde, M. P., Xu, M.,and Simpson, R. T. (1996) Direct study of DNA-protein interactions in repressed and active chromatin in living cells. EMBO J. 15, 6290–6300.

    PubMed  CAS  Google Scholar 

  2. Xu, M., Simpson, R. T.,and Kladde, M. P. (1998) Gal4p-mediated chromatin remodeling depends on binding site position in nucleosomes but does not require DNA replication. Mol. Cell. Biol. 18, 1201–1212.

    PubMed  CAS  Google Scholar 

  3. Jessen, W. J., Dhasarathy, A., Hoose, S. A., Carvin, C. D., Risinger, A. L.,and Kladde, M. P. (2004) Mapping chromatin structure in vivo using DNA methyltransferases. Methods 33, 68–80.

    Article  PubMed  CAS  Google Scholar 

  4. Frommer, M., MacDonald, L. E., Millar, D. S., et al. (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. USA 89, 1827–1831.

    Article  PubMed  CAS  Google Scholar 

  5. Clark, S. J., Harrison, J., Paul, C. L.,and Frommer, M. (1994) High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 22, 2990–2997.

    Article  PubMed  CAS  Google Scholar 

  6. Hayatsu, H. (1976) Bisulfite modification of nucleic acids and their constituents. Prog. Nucl. Acid Res. 16, 75–124.

    Article  CAS  Google Scholar 

  7. Xu, M., Kladde, M. P., Van Etten, J. L., and Simpson, R. T. (1998) Cloning, characterization and expression of the gene coding for cytosine-5-DNA methyltransferase recognizing GpC sites. Nucleic Acids Res. 26, 3961–3966.

    Article  PubMed  CAS  Google Scholar 

  8. Renbaum, P., Abrahamove, D., Fainsod, A., Wilson, G., Rottem, S.,and Razin, A. (1990) Cloning, characterization, and expression in Escherichia coli of the gene coding for the CpG DNA from Spiroplasma sp. strain MQ-1 (M.SssI). Nucleic Acids Res. 18, 1145–1152.

    Article  PubMed  CAS  Google Scholar 

  9. Caserta, M., Zacharias, W., Nwankwo, D., Wilson, G. G.,and Wells, R. D. (1987) Cloning, sequencing, in vivo promoter mapping, and expression in Escherichia coli of the gene for the HhaI methyltransferase. J. Biol. Chem. 262, 4770–4777.

    PubMed  CAS  Google Scholar 

  10. Carvin, C. D., Dhasarathy, A., Friesenhahn, L. B., Jessen, W. J.,and Kladde, M. P. (2003) Targeted cytosine methylation for in vivo detection of protein-DNA interactions. Proc. Natl. Acad. Sci. USA 100, 7743–7748.

    Article  PubMed  CAS  Google Scholar 

  11. Warnecke, P. M., Stirzaker, C., Song, J., Grunau, C., Melki, J. R.,and Clark, S. J. (2002) Identification and resolution of artifacts in bisulfite sequencing. Methods 27, 101–107.

    Article  PubMed  CAS  Google Scholar 

  12. Sheen, J.-Y.and Seed, B. (1988) Electrolyte gradient gels for DNA sequencing. Biotechniques 6, 942–944.

    PubMed  CAS  Google Scholar 

  13. Kladde, M. P.and Simpson, R. T. (1998) Rapid detection of functional expression of C-5-DNA methyltransferases in yeast. Nucleic Acids Res. 26, 1354–1355.

    Article  PubMed  CAS  Google Scholar 

  14. Kladde, M. P.and Simpson, R. T. (1994) Positioned nucleosomes inhibit Dam methylation in vivo. Proc. Natl. Acad. Sci. USA 91, 1361–1365.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Hoose, S.A., Kladde, M.P. (2006). DNA Methyltransferase Probing of DNA-Protein Interactions. In: Bina, M. (eds) Gene Mapping, Discovery, and Expression. Methods in Molecular Biology, vol 338. Humana Press. https://doi.org/10.1385/1-59745-097-9:225

Download citation

  • DOI: https://doi.org/10.1385/1-59745-097-9:225

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-575-0

  • Online ISBN: 978-1-59745-097-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics