Skip to main content

Protein-Ligand Interaction Probed by Time-Resolved Crystallography

  • Protocol
Protein-Ligand Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 305))

Abstract

Time-resolved (TR) crystallography is a unique method for determining the structures of intermediates in biomolecular reactions. The technique reached its mature stage with the development of the powerful third-generation synchrotron X-ray sources, and the advances in data processing and analysis of timeresolved Laue crystallographic data. A time resolution of 100 ps has been achieved and relatively small structural changes can be detected even from only partial reaction initiation. The remaining challenge facing the application of this technique to a broad range of biological systems is to find an efficient and rapid, system-specific method for the reaction initiation in the crystal. Other frontiers for the technique involve the continued improvement in time resolution and further advances in methods for determining intermediate structures and reaction mechanisms. The time-resolved technique, combined with trapping methods and computational approaches, holds the promise for a complete structure-based description of biomolecular reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moffat K. and Henderson R. (1995) Freeze trapping of reaction intermediates. Curr. Opin. Struct. Biol. 5, 656–663.

    Article  CAS  Google Scholar 

  2. Schlichting I. and Chu K. (2000) Trapping intermediates in the crystal: ligand binding to myoglobin. Curr. Opin. Struct. Biol. 10, 744–752.

    Article  CAS  Google Scholar 

  3. Stoddard B. L. (2001) Trapping reaction intermediates in macromolecular crystals for structural Analysis. Methods in Enzymology 24, 125–138.

    Article  CAS  Google Scholar 

  4. Ursby T., Weik M., Fioravanti E., Delarue M., Goeldner M., and Bourgeois D. (2002) Cryophotolysis of caged compounds: a technique for trapping interme-diate states in protein crystals. Acta Cryst. D58, 607–614.

    CAS  Google Scholar 

  5. Hellingwerf K., Hendriks J., and Gensch T. (2003) On the configurational and conformational changes in photoactive yellow protein that leads to signal generation in Ectothiorhodospira halophila.J Biol. Phys. 28, 295–412.

    Google Scholar 

  6. Brudler R., Rammelsberg R., Woo T. T., Getzoff E. D., and Gerwert K. (2001) Structure of the I1 early intermediate of photoactive yellow protein by FTIR spectroscopy. Nature Struct. Biol. 8, 265–270.

    Article  CAS  Google Scholar 

  7. Ujj L., Devanathan S., Meyer T. E., Cusanovich M. A., Tollin G., and Atkinson G. H. (1998) New photocycle intermediates in the photoactive yellow protein from Ecothiorhodospira halophila: picosecond transient absorption spectroscopy. Biophys. J. 75, 406–412.

    Article  CAS  Google Scholar 

  8. Haupts U., Tittor J., and Oesterhelt D. (1999) Closing in on bacteriorhodopsin: progress in understanding the molecule. Annu. Rev. Biophys. Biomol. Struct. 283, 67–99.

    Google Scholar 

  9. Mizutani Y. and Kitagawa T. (2001) Ultrafast structural relaxation of myoglobin following photodissociation of carbon monoxide probed by time-resolved resonance Raman cpectroscopy. J. Phys. Chem. B 105, 10,992–10,999.

    Article  CAS  Google Scholar 

  10. Jackson T. A., Lim M., and Anfinrud P. (1994) Complex nonexponential relaxation in myoglobin after photodissociation of MbCO: measurement and analysis from 2 ps to 56 µs. Chem. Phys 180, 131–140.

    Article  CAS  Google Scholar 

  11. Ansari A., Jones C. M., Henry E. R., Hofrichter J., and Eaton W. A. (1994) Conformational relaxation and ligand binding in myoglobin. Biochemistry 33, 5128–5145.

    Article  CAS  Google Scholar 

  12. Xie X. and Simon J. D. (1991) Protein conformational relaxation following photodissociation of co from carbonmonoxymyoglobin-picosecond circular-dichroism and absorption studies. Biochemistry 30, 3682–3692.

    Article  CAS  Google Scholar 

  13. Schotte F., Lim M., Jackson T. A., Smirnov A. V., Soman J., Olson J. S., Phillips G. N. J., Wulff M., and Anfinrud P. (2003) Watching a protein as it functions with 150ps time-resolved X-ray crystallography. Science 300, 1944–1947.

    Article  CAS  Google Scholar 

  14. Krinsky S., Fundamentals of Hard X-ray Synchrotron Radiation Sources, in Third-Generation HardX-ray Synchrotron Radiation Sources, Mills D., Ed., John Wiley & Sons, Inc., New York (2002).

    Google Scholar 

  15. Ren Z., Bourgeois D., Helliwell J. R., Moffat K., Šrajer V., and Stoddard B. L. (1999) Laue crystallography: coming of age. J. Synchrotron Rad. 6, 891–917.

    Article  CAS  Google Scholar 

  16. Šrajer V., Ren Z., Teng T.-Y., Schmidt M., Ursby T., Bourgeois D., Pradervand C., Schildkamp W., Wulff M., and Moffat K. (2001) Protein conformational relaxation and ligand migration in myoglobin: a nanosecond to millisecond molecular movie from time-resolved Laue X-ray diffraction. Biochemistry 40, 13,802–13,815.

    Article  Google Scholar 

  17. Bourgeois D., Vallone B., Schotte F., Arcovito A., Miele A. E., Sciara G., Wulff M., Anfinrud P., and Brunori M. (2003) Complex landscape of protein structural dynamics unveiled by nanosecond Laue crystallography. Proc. Natl. Acad. Sci. 100, 8704–8709.

    Article  CAS  Google Scholar 

  18. Srajer V., Teng T.-Y., Ursby T., Pradervand C., Ren Z., Adachi S., Schildkamp W., Bourgeois D., Wulff M., and Moffat K. (1996) Photolysis of the carbon monoxide complex of myoglobin: nanosecond time-resolved crystallography. Science 274, 1726–1729.

    Article  CAS  Google Scholar 

  19. Neutze R., Pebay-Peyroula E., Edman K., Royant A., Navarro J., and Landau E. M. (2002) Bacteriorhodopsin: a high resolution structural view of vectorial proton transport. Biochim. Biophys. Acta 1565, 144–167.

    Article  CAS  Google Scholar 

  20. Ren Z., Perman B., Šrajer V., Teng T.-Y., Pradervand C., Bourgeois D., Schotte F., Ursby T., Kort R., Wulff Mand Moffat K. (2001) A molecularmovie at 1.8 A resolution displays the photocycle of photoactive yellow protein, a eubacterial blue-light receptor, from nanoseconds to seconds. Biochemistry 40, 13,788–13,801.

    Article  CAS  Google Scholar 

  21. Genick U. K., Borgstahl G. E., Ng K., Ren Z., Pradervand C., Burke P. M., Šrajer V., Teng T.-Y., Schildkamp W., McRee D. E., Moffat K., and Getzoff E. D. (1997) Structure of a protein photocycle intermediate by millisecond time-resolved crystallography. Science 275, 1471–1475.

    Article  CAS  Google Scholar 

  22. Perman B., Šrajer V., Ren Z., Teng T-.Y., Pradervand C., Ursby T., Bourgeois D., Schotte F., Wulff M., Kort R., Hellingwerf K., and Moffat K. (1998) Energy transduction on the nanosecond time scale: early structural events in a xanthopsin photocycle. Science 279, 1946–1950.

    Article  CAS  Google Scholar 

  23. Crosson S. and Moffat K. (2002) Photoexcited structure of a plant photoreceptor domain reveals a light-driven molecular switch. Plant Cell 14, 1067–1075.

    Article  CAS  Google Scholar 

  24. Karplus M. (1999) In Simplicity and Complexity in Proteins and Nucleic Acids, (Frauenfelder H., Deisenhofer J., and Wolynes P., eds.). Dahlem University Press, Belin, 139.

    Google Scholar 

  25. Moffat K. (2001) Time-resolved biochemical crystallography: a mechanistic perspective. Chem. Rev. 101, 1569–1581.

    Article  CAS  Google Scholar 

  26. Steinfeld J. I., Francisco J. S., and Haase W. L. (1989) Chemical Kinetics and Dynamics. Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  27. Moffat K. (1989) Time-Resolved Macromolecular Crystallography. Annu. Rev.Biophys. Biophys. Chem. 18, 309–332.

    Article  CAS  Google Scholar 

  28. Schmidt M., Rajagopal S., Ren Z., and Moffat K. (2003) Application of singular value decomposition to the analysis of time-resolved macromolecular x-ray data. Biophys. J. 84, 2112–2129.

    Article  CAS  Google Scholar 

  29. Schmidt M., Pahl R., Šrajer V., Anderson S., Ren Z., Ihee H., and Moffat K. (2004) Protein kinetics: structures of intermediates and reaction mechanism from time-resolved x-ray data. Proc. Natl. Acad. Sci. 101, 4799–4804.

    Article  CAS  Google Scholar 

  30. Rajagopal S., Schmidt M., Anderson S., Ihee H., and Moffat K. (2004) Analysis of experimental time-resolved crystallographic data by singular value decomposition. Acta Cryst. D 60, 860–871.

    Article  Google Scholar 

  31. Abdel-Meguid S. S., Jeruzalmi D., and Sanderson M. R. (1996) Preliminary characterization of crystals. In Crystallographic methods and Protocols, Vol. 56 (Jones C., Mulloy B., and Sanderson M. R., eds.). Humana Press, Totowa, NJ, 55–86.

    Chapter  Google Scholar 

  32. Carrell H. L. and Glusker J. P. (2001) Crystallography of Biological Macromolecules, Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  33. Ren Z. and Moffat K. (1995) Quantitative analysis of synchrotron laue diffraction patterns in macromolecular crystallography. J. Appl. Cryst. 10, 461–481.

    Article  Google Scholar 

  34. Ren Z. and Moffat K. (1995) Deconvolution of energy overlaps in laue diffraction. J. Appl. Cryst. 28, 482–493.

    Article  CAS  Google Scholar 

  35. Campbell J. W. (1995) LAUEGEN, an X-windows-based program for the processing of Laue diffraction data. J. Appl. Cryst. 28, 228–236.

    Article  CAS  Google Scholar 

  36. Arzt S., Campbell J. W., Harding M. M., Hao Q., and Helliwell J. R. (1999) LSCALE-the new normalization, scaling and absorption correction program in the Daresbury Laue software suite. J. Appl. Cryst. 32, 554–562.

    Article  CAS  Google Scholar 

  37. Wakatsuki S. (1993) LEAP, Laue evaluation analysis package, for time-resolved protein crystallography, in CCP4 Study Weekend Proceedings: Data Collectionand Processing, Sawyer L., Isaacs N. W., and Bailey S., eds., CLRC Daresbury, Warrington, UK, 71–79.

    Google Scholar 

  38. Bourgeois D., Nurizzo D., Kahn R., and Cambillau C. (1998) An integration routine based on profile fitting with optimized fitting area for the evaluation of weak and/or overlapped two-dimensional Laue or monochromatic patterns. J. Appl. Cryst. 31, 22–35.

    Article  CAS  Google Scholar 

  39. Scott W. G., Murray J. B., Arnold J. R. P., Stoddard B. L., and Klug A. (1996) Capturing the structure of a catalytic RNA intermediate: the hammerhead ribozyme. Science 274, 2065–2069.

    Article  CAS  Google Scholar 

  40. Singer P. T., Smalas A., Carty R. P., Mangel W. F., and Sweet R. M. (1993) The hydrolytic water molecule in trypsin revealed by time-resolved Laue crystallography. Science 259, 669–673.

    Article  CAS  Google Scholar 

  41. Fulop V., Phizackerley R. P., Soltis S. M., Clifton I. J., Wakatsuki S., Erman J., Hajdu J., and Edwards S. L. (1994) Laue diffraction study on the structure of cytochrome c peroxidase compound I. Structure 2, 201–208.

    Article  CAS  Google Scholar 

  42. Bolduc J. M., Dyer D. H., Scott W. G., Singer P., Sweet R. M., Koshland D. E. J., and Stoddard B. L. (1995) Mutagenesis and Laue structures of enzyme intermediates: isocitrate dehydrogenase. Science 268, 1312–1318.

    Article  CAS  Google Scholar 

  43. Gouet P., Jouve H. M., Williams P. A., Andersson I., Andreoletti P., Nussaume L., and Hajdu J. (1996) Ferryl intermediates of catalase captured by time-resolved Weisenberg crystallography and UV-VIS spectroscopy. Nature Struct. Biol. 3, 951–956.

    Article  CAS  Google Scholar 

  44. Helliwell J. R., Nieh Y. P., Raftery J., Cassetta A., Habash J., Carr P. D., Ursby T., Wulff M., Thompson A. W., C., N. A., and Hadener A. (1998) Time resolved structures of hydroxymethylbilane synthase (Lys59Gln mutant) as it is loaded with substrate determined by Laue diffraction. J. Chem. Soc. Faraday Trans. 94, 2615–2622.

    Article  CAS  Google Scholar 

  45. Schlichting I. and Goody R. S. (1997) Triggering methods in crystallographic enzyme kinetics. Methods in Enzymology 277, 467–490.

    Article  CAS  Google Scholar 

  46. Hori T., Moriyama H., Kawaguchi J., Hayashi-Iwasaki Y., Oshima T., and Tanaka N. (2000) The initial step of the thermal unfolding of 3-isopropylmalate dehydrogenase detected by the temperature-jump Laue method. Protein Engineering 13, 527–533.

    Article  CAS  Google Scholar 

  47. McCray J. A. and Trentham D. R. (1989) Properties and uses of photoreactive caged compounds. Annu. Rev. Biophys. Biophys. Chem. 18, 239–270.

    Article  CAS  Google Scholar 

  48. Corrie J. E. T., and Trenhtam D. R. (1993) Biological Applications of Photochemical Switches, Vol. 2, Wiley, New York, NY.

    Google Scholar 

  49. Schlichting I., Almo S. C., Rupp G., Wilson K., Petratos K., Lentfer A., Wittinghofer A., Kabash W., Pai E. F., Petsko G. A., and Goody R. S. (1990) Time-resolved X-ray crystallographic study of the conformational change in Ha-ras p21 protein on GTP hydrolysis. Nature 345, 309–315.

    Article  CAS  Google Scholar 

  50. Stoddard B. L., Koenigs P., Porter N., Petratos K., Petsko G. A., and Ringe D. (1991) Observation of the light-triggered binding of pyrone to chymotrypsin by Laue X-ray crystallography. Proc. Natl. Acad. Sci. 88, 5503–5507.

    Article  CAS  Google Scholar 

  51. Duke E. M. H., Wakatsuki W., Hadfield A., and Johnson L. N. (1994) Laue and monochromatic diffraction studies on catalysis in phosphorylase b crystals. Protein Sci. 3, 1178–1196.

    Article  CAS  Google Scholar 

  52. Stoddard B. L., Cohen B. E., Brubaker M., Mesecar A. D., and Koshland D. E. J. (1998) Millisecond Laue structures of an enzyme-product complex using photocaged substrate analogs. Nature Struct. Biol. 5, 891–897.

    Article  CAS  Google Scholar 

  53. Chen Y., Šrajer V., Ng K., LeGrand A., and Moffat K. (1994) Optical monitoring of protein crystals in time-resolved x-ray experiments— microspectrophotometer design and performance. Rev. Sci. Instrum. 65, 1506–1511.

    Article  CAS  Google Scholar 

  54. Hadfield A. and Hajdu J. (1993) A fast and portable microspectrophotometer for protein crystallography. J. Appl. Cryst. 26, 839–842.

    Article  CAS  Google Scholar 

  55. Sakai K., Matsui Y., Kouyama T., Shiro Y., and Adachi S.-I. (2002) Optical monitoring of freeze trapped reaction intermediates in protein crystals: A microspectrophotometer for cryogenic protein crystallography. J. Appl. Cryst. 35, 270–273.

    Article  CAS  Google Scholar 

  56. Bourgeois D., Vernede X., Adam V., Fioravanti E., and Ursby T. (2002) A microspectrophotometer for UV-visible absorption and fluorescence studies of protein crystals. J. Appl. Cryst. 35, 319–326.

    Article  CAS  Google Scholar 

  57. Anderson S., Šrajer V., Pahl R., Rajagopal S., Schotte F., Anfinrud P., Wulff M., and Moffat K. (2004) Chromophore conformation and the evolution of tertiary structural changes in photoactive yellow protein. Structure 12, 1039–1045.

    Article  CAS  Google Scholar 

  58. Bourgeois D., Ursby T., Wulff M., Pradervand C., LeGrand A., Schildkamp W., Laboure S., Šrajer V., Teng T.-Y., Roth M., and Moffat K. (1996) Feasibility and realization of single-pulse laue diffraction on macromolecular crystals at ESRF. J. Synchrotron Rad. 3, 65–74.

    Article  CAS  Google Scholar 

  59. Schotte F., Techert S., Anfinrud P., Šrajer V., Moffat K., and Wulff M. (2002) Picosecond structural studies using pulsed synchrotron radiation. In Third-Generation HardX-Ray Synchrotron Radiation Sources. (Mills D., ed.). John Wiley & Sons, Inc., New York, NY, 345–401.

    Google Scholar 

  60. Knapp J. E., Šrajer V., Pahl R., and Royer W. E. J. (2004) Immobilization of Scapharca HbI crystals improves data quality of a time-resolved crystallographic experiment. Micron. 35, 107–108.

    Article  CAS  Google Scholar 

  61. Šrajer V., Crosson S., Schmidt M., Key J., Schotte F., Anderson S., Perman B., Ren Z., Teng T.-Y., Bourgeois D., Wulff M., and Moffat K. (2000) Extraction of accurate structure factor amplitudes from Laue data: wavelength normalization with wiggler and undulator X-ray sources. J. Synchrotron Rad. 7,236–244.

    Article  Google Scholar 

  62. Bourgeois D., Wagner U., and Wulff M. (2000) Towards automated Laue data processing: application to the choice of optimal X-ray spectrum. Acta Cryst. D56, 973–985.

    CAS  Google Scholar 

  63. Helliwell J. R. (1992) Macromolecular Crystallography With Synchrotron Radiation. Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  64. Drenth J. (1999) Principles of Protein X-Ray Crystallography, Springer, New York, NY.

    Book  Google Scholar 

  65. Henderson R., and Moffat J. K. (1971) The difference Fourier technique in protein crystallography: errors and their treatment. Acta Cryst. B 27, 1414–1420.

    Article  CAS  Google Scholar 

  66. Ursby T., and Bourgeois D. (1997) Improved estimation of structure-factor difference amplitudes from poorly accurate data. Acta Cryst. A 53, 564–575.

    Article  Google Scholar 

  67. McRee D. E. (1999) Practical Protein Crystallography, Academic Press, San Diego, CA.

    Google Scholar 

  68. Jones T. A., Bergdoll M., and Kjeldgaard MO. (1990) A macromolecular modeling environment. In Crystallographic and Modeling Methods in Molecular Design. (Bugg C. and Ealick S., eds.). Springer-Verlag Press, New York, NY, 189–195.

    Chapter  Google Scholar 

  69. Henry E. R. and Hofrichter J. (1992) Singular value decomposition: Application to analysis of experimental data. Methods in Enzymology 210, 129–192.

    Article  CAS  Google Scholar 

  70. Carson M. (1997) Ribbons. In Methods in En., zymology, Vol. 277. (Sweet R. M., and Carter C. W., eds.) Academic Press, 493–505.

    Google Scholar 

  71. Hajdu J., Neutze R., Sjogren T., Edman K., Szoke H., Wilmouth R. C., and Wilmot C. M. (2000) Analyzing protein functions in four dimensions. Nature Struct. Biol. 7, 1006–1012.

    Article  CAS  Google Scholar 

  72. Moffat K. (1998) Time-Resolved Crystallography. Acta Cryst. A 54, 833–841.

    Article  CAS  Google Scholar 

  73. Schlichting I., Berendzen J., Chu K., Stock A. M., Maves S. A., Benson D. E., Sweet R. M., Ringe D., Petsko G. A., and Sligar S. G. (2000) The catalytic pathway of cytochrome P450cam at atomic resolution. Science 287, 1615–1622.

    Article  CAS  Google Scholar 

  74. Berglund G. I., Carlsson G. H., Smith A. T., Szoke H., Henriksen A., and Hajdu J. (2002) The catalysis pathway of horseradish peroxidase at high resolution. Nature 417, 463–468.

    Article  CAS  Google Scholar 

  75. Schlichting I., Berendzen J., Phillips G. N., and Sweet R. M. (1994) Crystal structure of photolyzed carbonmonoxy-myoglobin. Nature 371, 808–812.

    Article  CAS  Google Scholar 

  76. Teng T. Y., Šrajer V., and Moffat K. (1994) Photolysis-induced structural changes in single crystals of carbonmonoxymyoglobin at 40K. Nature Struct. Biol. 1, 701–705.

    Article  CAS  Google Scholar 

  77. Teng T. Y., Šrajer V., and Moffat K. (1997) Initial trajectory of carbon monoxide after photodissociation from myoglobin at cryogenic temperatures. Biochemistry 36, 12,087–12,100.

    Article  CAS  Google Scholar 

  78. Chu K., Vojtechovsky J., McMahon B. H., Sweet R. M., Berendzen J., and Schlichting I. (2000) Structure of a ligand-binding intermediate in wild-type carbonmonoxy myoglobin. Nature 403, 921–923.

    Article  CAS  Google Scholar 

  79. Ostermann A., Waschipky R., Parak F. G., and Nienhaus G. U. (2000) Ligand binding and conformational motions in myoglobin. Nature 404, 205–208.

    Article  CAS  Google Scholar 

  80. Genick U. K., Soltis S. M., Kuhn P., Canestrelli I. L., and Getzoff E. D. (1998) Structure at 0.85 angstrom resolution of an early protein photocycle intermediate. Nature 392, 206–209.

    Article  CAS  Google Scholar 

  81. Kendrew J. C., Dickerson R. E., Strandberg B. E., Hart R. G., Davies D. R., Phillps D. C. and Shore V. C. (1960) Structure of myoglobin. A three-dimensional Fourier synthesis at 2 A resolution. Nature 185.

    Google Scholar 

  82. Ansari A., Berendzen J., Bowne S. F., Frauenfelder H., T., I. I. E., Sauke T. B., Shyamsunder E., and Young R. D. (1985) Protein states and protein quakes. Proc. Natl. Acad. Sci. 82, 5000–5004.

    Article  CAS  Google Scholar 

  83. Kachalova G. S., Popov A. N., and Bartunik H. D. (1999) A steric mechanism for inhibition of CO binding to heme proteins. Science 284, 473–476.

    Article  CAS  Google Scholar 

  84. Meyer T. E. (1985) Isolation and characterization of soluble cytochromes, ferredoxins and other chromophoric proteins from the halophile phototrophic bacterium Ectothiorhodospira halophila. Biochim. Biophys. Acta. 806, 175–183.

    Article  CAS  Google Scholar 

  85. Sprenger W. W., Hoff W. D., Armitage J. P., and Hellingwerf K. J. (1993) The eubacterium Ectothiorhodospira halophila is negatively phototactic, with a wavelength dependence that fits the absorption spectrum of the photoactive yellow protein. J. Bacteriol. 175, 3096–3104.

    Article  CAS  Google Scholar 

  86. Cusanovich M. A. and Meyer T. E. (2003) Photactive yellow protein: a prototypic PAS domain sensory protein and development of a common signaling mechanism. Biochemistry 42, 4759–4770.

    Article  CAS  Google Scholar 

  87. Winick H. (1995) The linac coherent light source (LCLS): A fourth generation light source using the SLAC linac. J. Elec. Spec. Rel. Phenom. 75, 1–8.

    Article  CAS  Google Scholar 

  88. Wiik B. H. (1997) The TESLA project: an accelerator facility for basic science. Nucl. Inst. Meth. Phys. Res. B 398, 1–17.

    Article  CAS  Google Scholar 

  89. Rossi G., Renzi M., Eikenberry E. F., Tate M. W., Bilderback D. H., Fontes E., Wixted R., Barna S., and Gruner S. M. (1999) Tests of a prototype pixel array detector for microsecond time-resolved X-ray diffraction. J. Synchrotron Rad. 6, 1096–1105.

    Article  CAS  Google Scholar 

  90. Rajagopal S., Kostov K., and Moffat K. (2004) Analytical trapping: Extraction of time-independent structures from time-dependent crystallographic data. J. Struct. Biol., in press.

    Google Scholar 

  91. Schweins T., Langen R., and Warshel A. (1994) Why mutagenesis studies not located the general base in Ras P21. Nature Struct. Biol. 1, 476–484.

    Article  CAS  Google Scholar 

  92. Henkelman G., Johannesson G., and Jonsson B. (2000) Methods for finding saddle points and minimum energy paths. In Progress on Theoretical Chemistry and Physics. (Schwartz S. D., ed.). Kluwer Academic Publishers, Dordrecht, The Netherlands, 269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Schmidt, M., Ihee, H., Pahl, R., Šrajer, V. (2005). Protein-Ligand Interaction Probed by Time-Resolved Crystallography. In: Ulrich Nienhaus, G. (eds) Protein-Ligand Interactions. Methods in Molecular Biology, vol 305. Humana, Totowa, NJ. https://doi.org/10.1385/1-59259-912-5:115

Download citation

  • DOI: https://doi.org/10.1385/1-59259-912-5:115

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-58829-372-5

  • Online ISBN: 978-1-59259-912-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics