Skip to main content

Application of Microscope-Based FRET to Study Molecular Interactions in Focal Adhesions of Live Cells

  • Protocol
Cell Migration

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 294))

  • 4220 Accesses

Abstract

This chapter describes the use of microscope-based fluorescence resonance energy transfer to follow dynamic interaction of molecules localized at focal adhesions. We first outline the significance of studying dynamic interactions in focal adhesions of living cells, and second provide an overview of the method itself. This is followed by a protocol for fluorescence resonance energy transfer measurements in live cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zamir, E. and Geiger, B. (2001) Molecular complexity and dynamics of cell-matrix adhesions. J. Cell Sci. 114, 3583–3590.

    PubMed  CAS  Google Scholar 

  2. Geiger, B., Bershadsky, A., Pankov, R., and Yamada, K. M. (2001) Transmembrane crosstalk between the extracellular matrix—cytoskeleton crosstalk. Nat. Rev. Mol. Cell. Biol. 2, 793–805.

    Article  PubMed  CAS  Google Scholar 

  3. Gordon, G. W., Berry, G., Liang, X. H., Levine, B., and Herman, B. (1998) Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys. J. 74, 2702–2713.

    Article  PubMed  CAS  Google Scholar 

  4. Foerster, T. (1948) Zwischenmoleculare Energiewanderung und Fluoreszenz. Ann. Physik. (Leipzig) 2, 55–75.

    Article  Google Scholar 

  5. Patterson, G. H., Piston, D. W., and Barisas, B. G. (2000) Forster distances between green fluorescent protein pairs. Anal. Biochem. 284, 438–440.

    Article  PubMed  CAS  Google Scholar 

  6. Stryer, L. (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–846.

    Article  PubMed  CAS  Google Scholar 

  7. Sekar, R. B. and Periasamy, A. (2003) Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J. Cell Biol. 160, 629–633.

    Article  PubMed  CAS  Google Scholar 

  8. Bastiaens, P. I. and Squire, A. (1999) Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol. 9, 48–52.

    Article  PubMed  CAS  Google Scholar 

  9. Kenworthy, A. K. and Edidin, M. (1998) Distribution of a glycosylphosphatidyl-inositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100 A using imaging fluorescence resonance energy transfer. J. Cell Biol. 142, 69–84.

    Article  PubMed  CAS  Google Scholar 

  10. Siegel, R. M., Chan, F. K., Zacharias, D. A., Swofford, R., Holmes, K. L., Tsien, R. Y., et al. (2000) Measurement of molecular interactions in living cells by fluorescence resonance energy transfer between variants of the green fluorescent protein. Sci. STKE 2000, PL1.

    Google Scholar 

  11. Miyawaki, A. and Tsien, R. Y. (2000) Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein. Methods Enzymol. 327, 472–500.

    Article  PubMed  CAS  Google Scholar 

  12. Mizuno, H., Sawano, A., Eli, P., Hama, H., and Miyawaki, A. (2001) Red fluorescent protein from Discosoma as a fusion tag and a partner for fluorescence resonance energy transfer. Biochemistry 40, 2502–2510.

    Article  PubMed  CAS  Google Scholar 

  13. Tsien, R. Y. (1998) The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544.

    Article  PubMed  CAS  Google Scholar 

  14. Campbell, R. E., Tour, O., Palmer, A. E., Steinbach, P. A., Baird, G. S., Zacharias, D. A., et al. (2002) A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 7877–7882.

    Article  PubMed  CAS  Google Scholar 

  15. Zacharias, D. A., Violin, J. D., Newton, A. C, and Tsien, R. Y. (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916.

    Article  PubMed  CAS  Google Scholar 

  16. Kraynov, V. S., Chamberlain, C, Bokoch, G. M., Schwartz, M. A., Slabaugh, S., and Hahn, K. M. (2000) Localized Rac activation dynamics visualized in living cells. Science 290, 333–337.

    Article  PubMed  CAS  Google Scholar 

  17. Itoh, R. E., Kurokawa, K., Ohba, Y., Yoshizaki, H., Mochizuki, N., and Matsuda, M. (2002) Activation of rac and cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells. Mol. Cell. Biol. 22, 6582–6591.

    Article  PubMed  CAS  Google Scholar 

  18. Mochizuki, N., Yamashita, S., Kurokawa, K., Ohba, Y., Nagai, T., Miyawaki, A., and Matsuda, M. (2001) Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. Nature 411, 1065–1068.

    Article  PubMed  CAS  Google Scholar 

  19. Yoshizaki, H., Ohba, Y., Kurokawa, K, Itoh, R. E., Nakamura, T., Mochizuki, N., et al. (2003) Activity of Rho-family GTPases during cell division as visualized with FRET-based probes. J. Cell Biol. 162, 223–232.

    Article  PubMed  CAS  Google Scholar 

  20. Miyawaki, A. (2003) Visualization of the spatial and temporal dynamics of intracellular signaling. Dev. Cell 4, 295–305.

    Article  PubMed  CAS  Google Scholar 

  21. Kurokawa, K, Mochizuki, N., Ohba, Y., Mizuno, H., Miyawaki, A., and Matsuda, M. (2001) A pair of fluorescent resonance energy transfer-based probes for tyrosine phosphorylation of the CrkII adaptor protein in vivo. J. Biol. Chem. 276, 31,305–31,310.

    Article  PubMed  CAS  Google Scholar 

  22. Zamir, E., Katz, B. Z., Aota, S., Yamada, K. M., Geiger, B., and Kam, Z. (1999) Molecular diversity of cell-matrix adhesions. J. Cell. Sci. 112, 1655–1669.

    PubMed  CAS  Google Scholar 

  23. Xia, Z. and Liu, Y. (2001) Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. Biophys. J. 81, 2395–2402.

    Article  PubMed  CAS  Google Scholar 

  24. Billinton, N. and Knight, A. W. (2001) Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence. Anal. Biochem. 291, 175–197.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Ballestrem, C., Geiger, B. (2005). Application of Microscope-Based FRET to Study Molecular Interactions in Focal Adhesions of Live Cells. In: Guan, JL. (eds) Cell Migration. Methods in Molecular Biology™, vol 294. Humana Press. https://doi.org/10.1385/1-59259-860-9:321

Download citation

  • DOI: https://doi.org/10.1385/1-59259-860-9:321

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-382-4

  • Online ISBN: 978-1-59259-860-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics