Skip to main content

Methods for Analysis of Poxvirus DNA Replication

  • Protocol
Vaccinia Virus and Poxvirology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 269))

Abstract

Cytoplasmic replication of poxviruses dictates the encoding of most, if not all, of the trans-acting factors required for faithful genome duplication. Several of these proteins have been identified through genetic and biochemical evaluation, including the catalytic DNA polymerase (E9), an essential and stoichiometric component of the processive polymerase (A20), a singlestrand DNA-binding protein (I3), a type I topoisomerase (H6), the uracil DNA glycosylase (D4), a nucleic acid-independent nucleoside triphosphatase (D5), a serine/threonine protein kinase (B1), and a Holliday Junction resolvase (A22). All of these factors work in concert to faithfully duplicate the viral genome. Although a replication origin has not been defined for the poxviruses, cis-acting sequences found within the telomeric 200 bp have been implicated as necessary and sufficient for minichromosome replication. Replication occurs within cytoplasmic foci from approx 3 to 12 h postinfection. This chapter includes several methodologies to assay and quantitate replication in vivo, visualize replication foci microscopically, and test the integrity of central replication enzymes in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moss, B. (2001) Poxviridae: the viruses and their replication, in Fields Virology (Knipe, D. M. and Howley, P. M., eds.), Lippincott-Raven, P□A, pp. 2849–2884.

    Google Scholar 

  2. Traktman, P. (1996) Poxvirus DNA replication, in DNA Replication in Eukaryotic Cells (Depamphilis, M. L., ed.), Cold Spring Harbor Laboratory, Cold Spring, NY, pp. 775–798.

    Google Scholar 

  3. Du, S._ and Traktman, P. (1996) Vaccinia virus DNA replication: two hundred base pairs of telomeric sequence confer optimal replication efficiency on minichromosome templates. Proc. Natl. Acad. Sci. USA 93, 9693–9698.

    Article  PubMed  CAS  Google Scholar 

  4. Evans, E. and Traktman, P. (1992) Characterization of vaccinia virus DNA replication mutants with lesions in the D5 gene. Chromosoma 102, S72–S82.

    Article  PubMed  CAS  Google Scholar 

  5. Punjabi, A., Boyle, K., DeMasi, J., Grubisha, O., Unger, B., Khanna, M., and Traktman, P. (2001) Clustered charge-to-alanine mutagenesis of the vaccinia virus A20 gene: temperature-sensitive mutants have a DNA-minus phenotype and are defective in the production of processive DNA polymerase activity. J. Virol. 75, 12308–12318.

    Article  PubMed  CAS  Google Scholar 

  6. Rempel, R. E., Anderson, M. K., Evans, E., and Traktman, P. (1990) Temperature-sensitive vaccinia virus mutants identify a gene with an essential role in viral replication. J. Virol. 64, 574–583.

    PubMed  CAS  Google Scholar 

  7. Brown, T. (1994) Enzymatic manipulation of DNA and RNA, in Current Protocols in Molecular Biology (Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K., eds.), John Wiley & Sons, Inc., Cambridge, MA, pp. 2.9.1–2.9.15.

    Google Scholar 

  8. Domi, A. and Beaud, G. (2000) The punctate sites of accumulation of vaccinia virus early proteins are precursors of sites of viral DNA synthesis. J. Gen. Virol. 81, 1231–1235.

    PubMed  CAS  Google Scholar 

  9. Garcia, A. D. and Moss, B. (2001) Repression of vaccinia virus Holliday junction resolvase inhibits processing of viral DNA into unit-length genomes. J. Virol. 75, 6460–6471.

    Article  PubMed  CAS  Google Scholar 

  10. Merchlinsky, M. and Moss, B. (1989) Resolution of vaccinia virus DNA concatemer junctions requires late-gene expression. J. Virol. 63, 1595–1603.

    PubMed  CAS  Google Scholar 

  11. Merchlinsky, M. and Moss, B. (1986) Resolution of linear minichromosomes with hairpin ends from circular plasmids containing vaccinia virus concatemer junctions. Cell 45, 879–884.

    Article  PubMed  CAS  Google Scholar 

  12. Tabor, S. and Struhl, K. (1994) Preparation and analysis of DNA, in Current Protocols in Molecular Biology (Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K., eds.), John Wiley & Sons, Inc., Cambridge, MA, pp. 3.5.4–3.5.10.

    Google Scholar 

  13. DeLange, A. M. (1989) Identification of temperature-sensitive mutants of vaccinia virus that are defective in conversion of concatemeric replicative intermediates to the mature linear DNA genome. J. Virol. 63, 2437–2444.

    PubMed  CAS  Google Scholar 

  14. Baroudy, B. M., Venkatesan, S., and Moss, B. (1982) Incompletely base-paired flip-flop terminal loops link the two DNA strands of the vaccinia virus genome into one uninterrupted polynucleotide chain. Cell 28, 315–324.

    Article  PubMed  CAS  Google Scholar 

  15. DeMasi, J., Du, S., Lennon, D., and Traktman, P. (2001) Vaccinia virus telomeres: interaction with the viral I1, I6, and K4 proteins. J. Virol. 75, 10090–10105.

    Article  PubMed  CAS  Google Scholar 

  16. Klemperer, N., McDonald, W., Boyle, K., Unger, B., and Traktman, P. (2001) The A20R protein is a stoichiometric component of the processive form of vaccinia virus DNA polymerase. J. Virol. 75, 12298–12307.

    Article  PubMed  CAS  Google Scholar 

  17. McDonald, W. F. and Traktman, P. (1994) Vaccinia virus DNA polymerase. In vitro analysis of parameters affecting processivity. J. Biol. Chem. 269, 31190–31197.

    PubMed  CAS  Google Scholar 

  18. McDonald, W. F., Klemperer, N., and Traktman, P. (1997) Characterization of a processive form of the vaccinia virus DNA polymerase. Virology 234, 168–175.

    Article  PubMed  CAS  Google Scholar 

  19. McDonald, W. F. and Traktman, P. (1994) Overexpression and purification of the vaccinia virus DNA polymerase. Protein Expr. Purif. 5, 409–421.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang, Y., Keck, J. G., and Moss, B. (1992) Transcription of viral late genes is dependent on expression of the viral intermediate gene G8R in cells infected with an inducible conditional-lethal mutant vaccinia virus. J. Virol. 66, 6470–6479.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Traktman, P., Boyle, K. (2004). Methods for Analysis of Poxvirus DNA Replication. In: Isaacs, S.N. (eds) Vaccinia Virus and Poxvirology. Methods in Molecular Biology, vol 269. Humana Press. https://doi.org/10.1385/1-59259-789-0:169

Download citation

  • DOI: https://doi.org/10.1385/1-59259-789-0:169

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-229-2

  • Online ISBN: 978-1-59259-789-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics