Skip to main content

Protein-Protein Interaction Analysis by Nuclear Magnetic Resonance Spectroscopy

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 261))

Abstract

Nuclear magnetic resonance (NMR) is a powerful technique to study protein-protein interactions in solution. Various methods have been developed and applied successfully for locating binding sites on proteins. The application of NMR chemical-shift perturbation to map the protein-protein interfaces is described in this chapter, providing a practical guideline that can be followed to carry out the experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Zuiderweg, E. R. (2002) Mapping protein-protein interactions in solution by NMR spectroscopy. Biochemistry 41(1), 1–7.

    Article  PubMed  CAS  Google Scholar 

  2. Moore, J. M. (1999) NMR techniques for characterization of ligand binding: utility for lead generation and optimization in drug discovery. Biopolymers 51(3), 221–243.

    Article  PubMed  CAS  Google Scholar 

  3. Roberts, G. C. K. (1993) NMR of Macromolecules: A Practical Approach. The Practical approach series. IRL Press, Oxford University Press, Oxford, NY, pp. xviii, 399.

    Google Scholar 

  4. Williams, J. G., Drugan, J. K.,, Yi, G. S., Clark, G. J., Der C. T., and Campbell, S. J. (2000) Elucidation of binding determinants and functional consequences of Ras/Raf-cysteine-rich domain interactions. J. Biol. Chem. 275(29), 22,172–22,179.

    Article  PubMed  CAS  Google Scholar 

  5. Mott, H. R., Carpenter, J. W., Zhang, S., Ghosh, S., Bell, R. M., and Campbell, S. L. (1996) The solution structure of the Raf-1 cysteine-rich domain: a novel ras and phospholipid binding site. Proc. Natl. Acad. Sci. USA 93(16), 8312–8317.

    Article  PubMed  CAS  Google Scholar 

  6. Grzesiek, S. and Bax, A. (1993) The importance of not saturating water in protein NMR. Application to sensitivity enhancement and NOE measurements. J. Am. Chem. Soc. 1993. 115(26), 12,593–12,594.

    Article  CAS  Google Scholar 

  7. Herrmann, C., Martin, G. A., and Wittinghofer, A. (1995) Quantitative analysis of the complex between p21ras and the Ras-binding domain of the human Raf-1 protein kinase. J. Biol. Chem. 270(7), 2901–2905.

    Article  PubMed  CAS  Google Scholar 

  8. Bagby, S., Tong, K. I., and Ikura, M. (2001) Optimization of protein solubility and stability for protein nuclear magnetic resonance. Meth. Enzymol. 339, 20–41.

    Article  PubMed  CAS  Google Scholar 

  9. Fiaux, J., Bartelsen, E. B., Horwich, A. L., and Wuthrich, K. (2002) NMR analysis of a 900K GroEL GroES complex. Nature 418(6894), 207–211.

    Article  PubMed  CAS  Google Scholar 

  10. Hoch, J. C. and Stern, A. S. (1996) NMR data processing. Wiley-Liss, New York, NY, pp. xi, 196.

    Google Scholar 

  11. Esposito, G., Lesk, A. M., Molinarim H., Molta, A., Nicrolar, N., and Pastore, A. (1992) Probing protein structure by solvent perturbation of nuclear magnetic resonance spectra. Nuclear magnetic resonance spectral editing and topological mapping in proteins by paramagnetic relaxation filtering. J. Mol. Biol. 224(3), 659–670.

    Article  PubMed  CAS  Google Scholar 

  12. Petros, A. M., Mueller, L. and Kopple, K.D. (1990) NMR identification of protein surfaces using paramagnetic probes. Biochemistry 29(43), 10,041–10,048.

    Article  PubMed  CAS  Google Scholar 

  13. Arumugam, S., Hemme, C. L., Yoshida, N., et al. (1998) TIMP-1 contact sites and perturbations of stromelysin 1 mapped by NMR and a paramagnetic surface probe. Biochemistry 37(27), 9650–9657.

    Article  PubMed  CAS  Google Scholar 

  14. Fairbrother, W. J., Christinger, H. W., Cochran, A., G., et al. (1998) Novel peptides selected to bind vascular endothelial growth factor target the receptor-binding site. Biochemistry 37(51), 17,754–17,764.

    Article  PubMed  CAS  Google Scholar 

  15. Pan, B., Li, B., Russell, S. J., Torn, J. Y., Cochran, A. G., and Fairbrother, W. J. (2002) Solution structure of a phage-derived peptide antagonist in complex with vascular endothelial growth factor. J. Mol. Biol. 316(3), 769–787.

    Article  PubMed  CAS  Google Scholar 

  16. Koradi, R., Billeter, M., and Wüthrich, K. (1996) MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14(1), 51–55.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Gao, G., Williams, J.G., Campbell, S.L. (2004). Protein-Protein Interaction Analysis by Nuclear Magnetic Resonance Spectroscopy. In: Fu, H. (eds) Protein-Protein Interactions. Methods in Molecular Biology, vol 261. Humana Press. https://doi.org/10.1385/1-59259-762-9:079

Download citation

  • DOI: https://doi.org/10.1385/1-59259-762-9:079

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-120-2

  • Online ISBN: 978-1-59259-762-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics