Skip to main content

Structure of MAPKs

  • Protocol
  • 923 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 250))

Abstract

Mitogen-activated protein kinases (MAPKs) are protein-serine/threonine kinases activated by signaling pathways triggered by developmental stages, cell-surface receptors, cell stresses and other environmental cues. The MAPK family includes the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and a splice variant of each, at least two ERK3 isoforms, ERK5, ERK7, four p38 MAP kinases (p38α, β, γ, and δ), and three c-Jun-N-terminal kinases/stress-activated protein kinases (JNK1–3/SAPKα, β, and γ), each with multiple splice variants (1,2). These kinases are often categorized based on their most efficacious activators, although all are regulated by numerous overlapping stimuli. ERK1/2 are major targets of Ras-dependent signals and are usually most strongly activated by growth factors and proliferative stimuli. The p38 MAPKs and the JNK/SAPKs are recognized as stress sensors and, in some cases, promote apoptosis. ERK5 is significantly activated by growth factors and stresses and does not fits easily into either of these categories. Signals that activate ERK3 and ERK7 have not been determined.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lewis, T. S., Shapiro, P. S., and Ahn, N. G. (1998) Signal transduction through MAP kinase cascades. Adv. Cancer Res 74, 49–139.

    Article  PubMed  CAS  Google Scholar 

  2. Pearson, G., Robinson, F., Beers Gibson, T., et al. (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 22 153–183.

    Article  PubMed  CAS  Google Scholar 

  3. Prowse, C. N., Hagopian, Jonathan C, et al. (2000) Catalytic reaction pathway for the mitogen-activated protein kinase ERK2. Biochemistry 39, 6258–6266.

    Article  PubMed  CAS  Google Scholar 

  4. Khokhlatchev, A. V., Canagarajah, B., Atkinson, M., Goldsmith, E., and Cobb, M. H. (1997) Phosphorylation of the map kinase ERK2 promotes its homodimerization and nuclear translocation. Cell 93, 605–615.

    Article  Google Scholar 

  5. Zhang, F., Strand, A., Robbins, D., Cobb, M. H., and Goldsmith, E. J. (1994) Atomic structure of the MAP kinase ERK2 at 2. 3Å resolution. Nature 367, 704–711.

    Article  PubMed  CAS  Google Scholar 

  6. Wang, Z., Harkins, P. C, Ulevitch, R. J., et al. (1997) The structure of the mitogenactivated protein kinase P38 at 2. 1 Å resolution. Proc. Natl. Acad. Sci. USA 94, 2327–2332.

    Article  PubMed  CAS  Google Scholar 

  7. Wilson, K. P., Fitzgibbon, M. J., Caron, P. R., et al. (1996) Crystal structure of the p38 mitogen-activated protein kinase. J. Biol. Chem. 271, 27,696–27,700.

    Article  PubMed  CAS  Google Scholar 

  8. Pav, S., White, D. M., Rogers, S., et al. (1997) Crystallization and preliminary crystallographic analysis of recombinant human p38 MAP kinase. Protein Sci. 6, 242–245.

    Article  PubMed  CAS  Google Scholar 

  9. Xie, X., Gu, Y, Fox, T., et al. (1998) Crystal structure of JNK3: a kinase implicated in neuronal apoptosis. Structure 6, 983–991.

    Article  PubMed  CAS  Google Scholar 

  10. Canagarajah, B. J., Khokhlatchev, A., Cobb, M. H., and Goldsmith, E. J. (1997) Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell 90, 859–869.

    Article  PubMed  CAS  Google Scholar 

  11. Bellon, S., Fitzgibbon, M. J., Fox, T., Hsiao, H.-M., and Wilson, K. P. (1999) The structure of phosphorylated p38γ is monomeric and reveals a conserved activation loop conformation. Structure 7, 1057–1065.

    Article  PubMed  CAS  Google Scholar 

  12. Wilson, K. P., McCaffrey, P. G., Hsiao, K., et al. (1997) The structural basis for the specificity of pyridinylimidazole inhibitors of p38 MAP kinase. Chem. Biol. 4, 423–431.

    Article  PubMed  CAS  Google Scholar 

  13. Wang, W., Canagarajah, B. J., Boehm, J. C, et al. (1998) Structural basis of inhibitor selectivity in MAP kinases. Structure 6, 1117–1128.

    Article  PubMed  CAS  Google Scholar 

  14. Shewchuk, L., Hassell, A., Wisely, B., et al. (2000) Binding mode of the 4-anilinoquinazoline class of protein kinase inhibitor: x-ray crystallographic studies of 4-anilinoquinazolines bound to cyclin-dependent kinase 2 and p38 kinase. J. Med. Chem. 1, 133–138.

    Article  Google Scholar 

  15. Tong, L., Pav, S., White, D. M., et al. (1997) A highly specific inhibitor of human p38 MAP kinase binds in the ATP pocket. Nat. Struct. Biol. 4, 311–316.

    Article  PubMed  CAS  Google Scholar 

  16. Hanks, S. K. and Hunter, T. (1995) The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 9, 576–596.

    PubMed  CAS  Google Scholar 

  17. Graziano, M. P., Freissmuth, M., and Gilman, A. G. (1989) Expression of G in Escherichia coli. J. Biol. Chem. 264, 409–418.

    PubMed  CAS  Google Scholar 

  18. Sheffield, P., Garrard, S., and Derewenda, Z. (1999) Overcoming Expression and Purification Problems of RhoGDI Using a Family of Parallel Expression Vectors. Protein Expression Purification 15, 34–39.

    Article  PubMed  CAS  Google Scholar 

  19. Wilsbacher, J. L. and Cobb, M. H. (2001) Bacterial expression of activated MAP kinases. Meth. Enzymol. 332, 387–400.

    Article  PubMed  CAS  Google Scholar 

  20. Khokhlatchev, A., Xu, S., English, J., et al. (1997) Reconstitution of mitogen-activated protein kinase phosphorylation cascades in bacteria: efficient synthesis of active protein kinases. J. Biol. Chem. 272, 11,057–11,062.

    Article  PubMed  CAS  Google Scholar 

  21. Ducruix, A. and Giege, R. (1999) Crystallization of Nucleic Acids and Proteins, Oxford University Press, Oxford, UK.

    Google Scholar 

  22. Knighton, D. R., et al. (1991) Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253, 407–413.

    Article  PubMed  CAS  Google Scholar 

  23. Navaza, J. E. (1992) AMoRe: A New Package for Molecular Replacement, SERC, Daresbury, UK.

    Google Scholar 

  24. Brunger, A. T. (1992) X-PLOR Version 3.0: A System for Crystallography and NMR, Yale University Press, New Haven, CT.

    Google Scholar 

  25. Brunger, A. T., Adams, P. D., Clore, G. M., et al. (1998) Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921.

    Article  PubMed  CAS  Google Scholar 

  26. Hendrickson, W. A., Smith, J. L., Phizackerley, R. P., and Merritt, E. A. (1997) Phase Determination from Multiwavelength Anomalous Diffraction Measurements. Meth. Enzymol. 276, 494–523.

    Article  CAS  Google Scholar 

  27. Zhang, J., Zhang, F., Ebert, D., Cobb, M. H., and Goldsmith, E. J. (1995) Activity of the MAP kinase ERK2 is controlled by a flexible surface loop. Structure 3, 299–307.

    Article  PubMed  CAS  Google Scholar 

  28. Knighton, D. R., Zheng, J. H., Ten Eyck, L. F., et al. (1991) Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253, 414–420.

    Article  PubMed  CAS  Google Scholar 

  29. Gibbs, C. S., Knighton, D. R., Sowadski, J. M., Taylor, S. S., and Zoller, M. J. (1992) Systematic mutational analysis of cAMP-dependent protein kinase identifies unregulated catalytic subunits and defines regions important for the recognition of the regulatory subunit. J. Biol. Chem. 267, 4806–4814.

    PubMed  CAS  Google Scholar 

  30. Esnouf, R. M. (1999) Further additions to Mo1Script Version 1. 4, including reading and contouring of electron-density maps. Acta Crystallogr. D Biol. Crystallogr 55, 938–940.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Goldsmith, E.J., Cobb, M.H., Chang, CI. (2004). Structure of MAPKs. In: Seger, R. (eds) MAP Kinase Signaling Protocols. Methods in Molecular Biology™, vol 250. Humana Press. https://doi.org/10.1385/1-59259-671-1:127

Download citation

  • DOI: https://doi.org/10.1385/1-59259-671-1:127

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-998-8

  • Online ISBN: 978-1-59259-671-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics