Skip to main content

Gene Transfer to Skeletal Muscle Using Herpes Simplex Virus-Based Vectors

  • Protocol
Book cover Gene Delivery to Mammalian Cells

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 246))

  • 1263 Accesses

Abstract

Type 1 herpes simplex virus (HSV-1)-based vectors, which are naturally capable of carrying large DNA fragments like the 14 kb dystrophin cDNA, have been studied for their ability to transduce muscle cells (15). These vectors can persist in the host cell in a nonintegrated state and can be prepared at adequately high titers (107–109 PFU/mL). They also infect myoblasts, myotubes, and immature myofibers efficiently (15). The major disadvantage of the first-generation HSV vectors is their relatively high cytotoxicity, which hampers long-term transgene expression. Second-generation mutants defective for multiple immediate early (IE) genes (e.g., ICP4, ICP22, and ICP27) display substantially reduced cytotoxicity in vitro, which improves the duration of transgene expression (611). In this chapter, we describe a new method of gene delivery using second-generation HSV-1 vectors. This procedure should enable an investigator to transduce normal mouse muscle cells, both in vitro and in vivo. We explain the conditions for muscle cell isolation, transduction in vitro and in vivo, and the technique for evaluating transduction efficiency (β-galactosidase; β-gal) using histology or the β-gal assay (ONPG) method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huard, J., Akkaraju, G., Watkins, S. C., Pike-Cavalcoli, M., and Glorioso, J. C. (1997) LacZ gene transfer to skeletal muscle using a replication-defective herpes simplex virus type 1 mutant vector. Hum. Gene Ther. 8, 439–452.

    Article  PubMed  CAS  Google Scholar 

  2. Huard, J., Feero, W. G., Watkins, S. C., Hoffman, E. P., Rosenblatt, D. J., and Glorioso, J. C. (1996) The basal lamina is a physical barrier to herpes simplex virus-mediated gene delivery to mature muscle fibers. J. Virol. 70, 8117–8123.

    PubMed  CAS  Google Scholar 

  3. Falk, T., Kilani, R. K., Yool, A. J., and Sherman, S. J. (2001) Viral vector-mediated expression of K+ channels regulates electrical excitability in skeletal muscle. Gene Ther. 8, 1372–1379.

    Article  PubMed  CAS  Google Scholar 

  4. Wright, M. J., Wightman, L. M., Lilley, C., de Alwis, M., Hart, S. L., Miller, A., et al. (2001) In vivo myocardial gene transfer: optimization, evaluation and direct comparison of gene transfer vectors. Basic Res. Cardiol. 96, 227–236.

    Article  PubMed  CAS  Google Scholar 

  5. Akkaraju, G. R., Huard, J., Hoffman, E. P., Goins, W. F., Pruchnic, R., Watkins, S. C., et al. (1999) Herpes simplex virus vector-mediated dystrophin gene transfer and expression in MDX mouse skeletal muscle. J. Gene Med. 1, 280–289.

    Article  PubMed  CAS  Google Scholar 

  6. Krisky, D. M., Marconi, P. C., Oligino, T. J., Rouse, R. J., Fink, D. J., Cohen, J. B., et al. (1998) Development of herpes simplex virus replication-defective multigene vectors for combination gene therapy applications. Gene Ther. 5, 1517–1530.

    Article  PubMed  CAS  Google Scholar 

  7. Krisky, D. M., Wolfe, D., Goins, W. F., Marconi, P. C., Ramakrishnan, R., Mata, M., et al. (1998) Deletion of multiple immediate-early genes from herpes simplex virus reduces cytotoxicity and permits long-term gene expression in neurons. Gene Ther. 5, 1593–1603.

    Article  PubMed  CAS  Google Scholar 

  8. Samaniego, L. A., Webb, A. L., and DeLuca, N. A. (1995) Functional interactions between herpes simplex virus immediate-early proteins during infection: gene expression as a consequence of ICP27 and different domains of ICP4. J. Virol. 69, 5705–5715.

    PubMed  CAS  Google Scholar 

  9. Samaniego, L. A., Wu, N., and DeLuca, N. A. (1997) The herpes simplex virus immediate-early protein ICP0 affects transcription from the viral genome and infected-cell survival in the absence of ICP4 and ICP27. J. Virol. 71, 4614–4625.

    PubMed  CAS  Google Scholar 

  10. Wu, N., Watkins, S. C., Schaffer, P. A., and DeLuca, N. A. (1996) Prolonged gene expression and cell survival after infection by a herpes simplex virus mutant defective in the immediate-early genes encoding ICP4, ICP27, and ICP22. J. Virol. 70, 6358–6369.

    PubMed  CAS  Google Scholar 

  11. Marconi, P., Krisky, D., Oligino, T., Poliani, P. L., Ramakrishnan, R., Goins, W. F., et al. (1996) Replication-defective herpes simplex virus vectors for gene transfer in vivo. Proc. Natl. Acad. Sci. USA 93, 11319–11320.

    Article  PubMed  CAS  Google Scholar 

  12. van Deutekom, J. C., Floyd, S. S., Booth, D. K., Oligino, T., Krisky, D., Marconi, P., et al. (1998) Implications of maturation for viral gene delivery to skeletal muscle. Neuromuscul. Disord. 8, 135–148.

    Article  PubMed  Google Scholar 

  13. Mester, J. C., Pitha, P. M., and Glorioso, J. C. (1995) Antiviral activity of herpes simplex virus vectors expressing murine alpha 1-interferon. Gene Ther. 2, 187–196.

    PubMed  CAS  Google Scholar 

  14. Huard, J., Goins, W. F., Akkaraju, G. R., Krisky, D., Oligino, T., Marconi, P., et al. (1998) Gene transfer to muscle and spinal cord using herpes simplex virus-based vectors, in: Stem Cell Biology and Gene Therapy (Quesenberry, P.J., Stein, G.S., Forget, B., and Weissman, S., eds.), John Wiley & Sons, Inc., Indianapolis, IN pp. 179–200.

    Google Scholar 

  15. Gage, P. J., Sauer, B., Levine, M., and Glorioso, J. C. (1992) A cell-free recombination system for site-specific integration of multigenic shuttle plasmids into the herpes simplex virus type 1 genome. J. Virol. 66, 5509–5515.

    PubMed  CAS  Google Scholar 

  16. Hall, C. V., Jacob, P. E., Ringold, G. M., and Lee, F. (1983) Expression and regulation of Escherichia coli lacZ gene fusions in mammalian cells. J. Mol. Appl. Genet. 2, 101–109.

    PubMed  CAS  Google Scholar 

  17. Norton, P. A. and Coffin, J. M. (1985) Bacterial beta-galactosidase as a marker of Rous sarcoma virus gene expression and replication. Mol. Cell Biol. 5, 281–290.

    PubMed  CAS  Google Scholar 

  18. Young, D. C., Kingsley, S. D., Ryan, K. A., and Dutko, F. J. (1993) Selective inactivation of eukaryotic beta-galactosidase in assays for inhibitors of HIV-1 TAT using bacterial beta-galactosidase as a reporter enzyme. Anal. Biochem. 215, 24–30.

    Article  PubMed  CAS  Google Scholar 

  19. Qu, Z., Balkir, L., van Deutekom, J. C., Robbins, P. D., Pruchnic, R., and Huard, J. (1998) Development of approaches to improve cell survival in myoblast transfer therapy. J. Cell Biol. 142, 1257–1267.

    Article  PubMed  CAS  Google Scholar 

  20. Lee, J. Y., Qu-Petersen, Z., Cao, B., Kimura, S., Jankowski, R., Cummins, J., et al. (2000) Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing. J. Cell Biol. 150, 1085–1100.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Cao, B., Huard, J. (2004). Gene Transfer to Skeletal Muscle Using Herpes Simplex Virus-Based Vectors. In: Heiser, W.C. (eds) Gene Delivery to Mammalian Cells. Methods in Molecular Biology™, vol 246. Humana Press. https://doi.org/10.1385/1-59259-650-9:301

Download citation

  • DOI: https://doi.org/10.1385/1-59259-650-9:301

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-095-3

  • Online ISBN: 978-1-59259-650-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics