Skip to main content

Identification of Covalent Flavoproteins and Analysis of the Covalent Link

  • Protocol
Flavoprotein Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 131))

Abstract

Flavin is a versatile cofactor involved in a wide spectrum of chemical transformations in biology. It is therefore not surprising that the flavoenzyme family represents one of the largest collections of redox enzyme molecules. The so-called covalent flavoproteins form a subgroup of this larger family of flavoproteins (1) and, although a relatively small group (approx 25 members as of 1998), covalent flavoproteins have received considerable attention, both from the viewpoint of enzyme mechanism and also the mode by which the flavin redox center becomes attached to the protein scaffold. The covalent flavoproteins fall into two categories—those in which the flavin is attached at the C6 position of the flavin isoalloxazine ring and those where linkage is via the 8α methyl group ( Fig. 1 ). The former group has only two members (tri- and dimethylamine dehydrogenases) and attachment occurs via a cysteine residue forming a C6-thioether linkage. The 8α methyl grouping forms the majority of the covalent flavoprotein family and members are typified by linkages between the 8α methyl group of the flavin isoalloxazine ring and histidine, tyrosine or cysteine side chains. The role of covalently bound flavins in redox enzymology has been the focus of much debate. For example, modulation of flavin reduction potential (2,3) and improvement of electron transfer rates to downstream redox acceptors by enhancing electronic coupling between cofactors (4) have been proposed. Recent work on trimethylamine dehydrogenase suggests that covalent linkage may have evolved to suppress hydroxylation of the isoalloxazine ring at the C6 position, thereby preventing inactivation of the redox center (5). Analysis of a variety of covalent flavoproteins has revealed that formation of the covalent link is a self-catalytic process (4,6,7), and mechanisms for flavinylation have been proposed. For selected enzymes, studies by directed mutagenesis have confirmed the roles of key residues in the flavinylation reaction [e.g., (4,8)].

Structures of the known flavin amino acids found in covalent flavoenzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mewies, M., McIntire, W. S., and Scrutton, N. S. (1998) Covalent attachment of flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) to enzymes: the current state of affairs. Protein Sci. 7, 1–14.

    Google Scholar 

  2. Edmondson, D. E. and De Francisco, R. (1992) Structure, synthesis and physical properties of covalently bound flavins and 6-and 8-hydroxyflavins, in Chemistry and Biochemistry of Flavoenzymes, vol. 1 (Muller, F., ed.), Boca Raton, FL, CRC Press, pp. 73–103.

    Google Scholar 

  3. Williamson, G. and Edmondson, D. E. (1985) Effects of pH on oxidation-reduction potentials of 8α-N-substituted flavins. Biochemistry 24, 7790–7797.

    Article  PubMed  CAS  Google Scholar 

  4. Kim, J., Fuller, J. H., Kuusk, V., Cunane, L., Chen, Z., Mathews, F. S., and McIntire, W. S. (1995) The cytochrome subunit is necessary for covalent FAD attachment to the flavoprotein subunit of p-cresol methylhydroxylase. J. Biol. Chem. 263, 31,202–31,209.

    Google Scholar 

  5. Mewies, M., Basran, J., Packman, L. C., Hille, R., and Scrutton, N. S. (1997) Involvement of a flavin iminoquinone methide in the formation of 6-hydroxy FMN in trimethylamine dehydrogenase: a rationale for the existence of 8α-methyl and C6-linked covalent flavoproteins. Biochemistry 36, 7162–7168.

    Article  PubMed  CAS  Google Scholar 

  6. Scrutton, N. S., Packman, L. C., Mathews, F. S., Rohlfs, R. J., and Hille, R. (1994) Assembly of redox centers in the trimethylamine dehydrogenase of bacterium W3A1: properties of the wild-type enzyme and a C30A mutant expressed from a cloned gene in Escherichia coli. J. Biol. Chem. 269, 13,942–13,950.

    PubMed  CAS  Google Scholar 

  7. Nagursky, H., Bichler, V., and Brandsch, R. (1988) Phosphoenolpyruvate-dependent flavinylation of 6-hydroxy-d-nicotine oxidase. Eur. J. Biochem. 177, 319–325.

    Article  PubMed  CAS  Google Scholar 

  8. Packman, L. C., Mewies, M., and Scrutton, N. S. (1995) The flavinylation reaction of trimethylamine dehydrogenase: analysis by directed mutagenesis and electrospray mass spectrometry. J. Biol. Chem. 270, 13,186–13,191.

    PubMed  CAS  Google Scholar 

  9. Ohishi, N. and Yagi, K. (1979) Covalently bound flavin as prosthetic group of choline oxidase. Biochem. Biophys. Res. Comm. 86, 1084–1088.

    Article  PubMed  CAS  Google Scholar 

  10. Kiuchi, K., Nishikimi, M., and Yagi, K. (1982) Purification and characterisation of L-gulonolactone oxidase from chicken kidney microsomes. Biochemistry 21, 5076–5082.

    Article  PubMed  CAS  Google Scholar 

  11. Kutchan, T. M. and Dittrich, H. (1995) Characterisation and mechanism of the berberine bridge enzyme, a covalently flavinylated oxidase of benzophenanthridine alkaloid biosynthesis in plants. J. Biol. Chem. 270, 24,475–24,481.

    Article  PubMed  CAS  Google Scholar 

  12. Singer, T. P. and McIntire, W. S. (1984) Structure, properties and determination of covalently bound flavins. Methods Enzymol. 66, 253–264.

    Article  Google Scholar 

  13. Kenney, W. C., McIntire, W. S., and Yamanaka, T. (1977) Structure of the covalently bound flavin of Chlorobium cytochrome c 553. Biochim. Biophys. Acta 483, 467–474.

    PubMed  CAS  Google Scholar 

  14. Bruhmuller, M., and Decker, K. (1973) Covalently bound flavin in D-6-hydroxynicotine oxidase from Arthrobacter oxidans. Eur. J. Biochem. 37, 256–258.

    Article  PubMed  CAS  Google Scholar 

  15. Kenney, W. C., Edmondson, D. E., and Seng, R. L. (1976) Identification of the covalently bound flavin of thiamin dehydrogenase. J. Biol. Chem. 251, 5386–5390.

    PubMed  CAS  Google Scholar 

  16. Kenney, W. C., Edmondson, D. E., Singer, T. P., Nishikimi, M., Noguchi, E., and Yagi, K. (1979) Identification of the covalently-bound flavin of L-galactonolactone oxidase from yeast. FEBS Lett. 97, 40–42.

    Article  PubMed  CAS  Google Scholar 

  17. Kenney, W. C., Singer, T. P., Fukuyama, M., and Miyake, Y. (1979) Identification of the covalently bound flavin prosthetic group of cholesterol oxidase. J. Biol. Chem. 254, 4689–4690.

    PubMed  CAS  Google Scholar 

  18. Steenkamp, D. J., Kenney, W. C., and Singer, T. P. (1978) A novel type of covalently bound coenzyme in trimethylamine dehydrogenase. J. Biol. Chem. 253, 2812–2817.

    PubMed  CAS  Google Scholar 

  19. McIntire, W., Edmondson, D. E., Singer, T. P., and Hopper, D. J. (1980) 8α-O-tyrosyl FAD: a new form of covalently bound flavin from p-cresol methylhydroxylase. J. Biol. Chem. 255, 6553–6555.

    PubMed  CAS  Google Scholar 

  20. Kvalnes-Krick, K. and Jorns, M. S. (1986) Bacterial sarcosine oxidase: comparison of two multisubunit enzymes containing both covalent and noncovalent flavin. Biochemistry 25, 6061–6069.

    Article  PubMed  CAS  Google Scholar 

  21. De Jong, E., van Berkel, W. J. H., van der Zwan, R. P., and de Bont, J. A. M. (1992) Purification and characterisation of vanillyl-alcohol oxidase from Penicillium simplicissium. Eur. J. Biochem. 208, 651–657.

    Article  PubMed  Google Scholar 

  22. Walker, W. H., Kearney, E. B., Seng, R. L., and Singer, T. P. (1971) The covalently-bound flavin of hepatic monoamine oxidase: identification and properties of cysteinyl riboflavin. Eur. J. Biochem. 24, 328–331.

    Article  PubMed  CAS  Google Scholar 

  23. Edmondson, D. E., Kenney, W. C., and Singer, T. P. (1976) Structural elucidation and properties of 8α-(N 1-histidyl) riboflavin: the flavin component of thiamine dehydrogenase and cyclopiazonate oxidocyclase. Biochemistry 15, 2937–2945.

    Article  PubMed  CAS  Google Scholar 

  24. McIntire, W., Edmondson, D. E., Hopper, D. J., and Singer, T. P. (1981) 8α-(O-Tyrosyl)flavin adenine dinucleotide, the prosthetic group of bacterial p-cresol methylhydroxylase. Biochemistry 20, 3068–3075.

    Article  PubMed  CAS  Google Scholar 

  25. Steenkamp, D. J., McIntire, W., and Kenney, W. C. (1978). Structure of the covalently bound coenzyme of trimethylamine dehydrogenase: evidence for a 6-substituted flavin. J. Biol. Chem. 253, 2818–2824.

    PubMed  CAS  Google Scholar 

  26. Singer, T. P., and Edmondson, D. E. (1980) Structure, properties, and determination of covalently bound flavins. Methods Enzymol. 66, 253–264.

    Article  PubMed  CAS  Google Scholar 

  27. Salach, J., Walker, W. H., Singer, T. P., Ehrenberg, A., Hemmerich, P., Ghisla, S., and Hartman, U. (1972) Studies on succinate dehydrogenase: site of attachment of the covalently-bound flavin to the peptide chain. Eur. J. Biochem. 26, 267–278.

    Article  PubMed  CAS  Google Scholar 

  28. Kenney, W. C. and Walker, W. H. (1972) Synthesis and properties of 8α-substituted riboflavins of biological importance. FEBS Lett. 20, 297–301.

    Article  PubMed  CAS  Google Scholar 

  29. Walker, W. H., Singer, T. P., Ghisla, S., and Hemmerich, P. (1972) Studies on succinate dehydrogenase: 8α-histidyl FAD as the active center of succinate dehydrogenase. Eur. J. Biochem. 26, 279–289.

    Article  PubMed  CAS  Google Scholar 

  30. Edmondson, D. E. (1976) 2′,5′-Anhydro-8α-histidyl flavins: their occurrence and structural elucidation. Fed. Proc. 35, 1542.

    Google Scholar 

  31. Kearney, E. B., Salach, J. I., Walker, W. H., Seng, R. L., Kenney, W., Zeszotek, E., and Singer, T. P. (1971) The covalently-bound flavin of hepatic monoamine oxidase. 1. Isolation and sequence of a flavin peptide and evidence for binding at the 8α position. Eur. J. Biochem. 24, 321–327.

    Article  PubMed  CAS  Google Scholar 

  32. Edmondson, D. E., Kenney, W. C., and Singer, T. P. (1978) Synthesis and isolation of 8α-substituted flavins and flavin peptides. Methods Enzymol. 53, 449–465.

    Article  PubMed  CAS  Google Scholar 

  33. Ghisla, S., Kenney, W. C., Knappe, W. R., McIntire, W. S., and Singer, T. P. (1980) Chemical synthesis and some properties of 6-substituted flavins. Biochemistry 19, 2537–2544.

    Article  PubMed  CAS  Google Scholar 

  34. Kenny, W. C. and Singer, T. P. (1977) Evidence for a thioether linkage between the flavin and polypeptide chain of Chromatium cyctochrome c 552. J. Biol. Chem. 252, 4767–4772.

    Google Scholar 

  35. Falk, M. C. and McCormick, D. B. (1976) Synthetic flavinyl peptides related to the active site of mitochondrial monoamine oxidase II. Fluorescence properties. Biochemistry 15, 646–653.

    Article  PubMed  CAS  Google Scholar 

  36. Perrett, D., Bhuste, L., Patel, J., and Herbert, K. (1991) Comparative performance of ion-exchange and ion-paired reversed phase high-performance liquid-chromatography for the determination of nucleotides in biological samples. Biomed. Chromatogr. 5, 207–211.

    Article  PubMed  CAS  Google Scholar 

  37. Randerath, K. and Randerath, E. (1967) Thin-layer separation methods for nucleic acid derivatives. Methods Enzymol. 12, 323–347.

    Article  Google Scholar 

  38. Kenney, W. C., Edmondson, D. E., Singer, T. P., Steenkamp, D. J., and Schabort, J. C. (1976) Identification and properties of the covalently bound flavin of β-cyclopiazonate oxidocyclase. Biochemistry 15, 4931–4935.

    Article  PubMed  CAS  Google Scholar 

  39. McIntire, W. S., Singer, T. P., Ameyama, M., Adachi, O., Matsushita, K., and Shinagawa, E. (1985) Identification of the covalently-bound flavins of D-gluconate dehydrogenase from Pseudomonas aeroginosa and Pseudomonas fluorescens and of 2-keto-D-gluconate dehydrogenase from Gluconobacter melanogenus. Biochem. J. 231, 651–654.

    PubMed  CAS  Google Scholar 

  40. Smith, I. (1960) Thin layer chromatography, in Chromatographic and Electrophoretic Techniques, vol. 1 (Smith, I., ed.), 2nd ed., Interscience, New York, pp. 66–103.

    Google Scholar 

  41. Koziol, J. (1971) Fluorometric analyses of riboflavin and its coenzymes. Methods Enzymol. 18B, 253–285.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Scrutton, N.S. (1999). Identification of Covalent Flavoproteins and Analysis of the Covalent Link. In: Chapman, S.K., Reid, G.A. (eds) Flavoprotein Protocols. Methods in Molecular Biology, vol 131. Humana Press. https://doi.org/10.1385/1-59259-266-X:181

Download citation

  • DOI: https://doi.org/10.1385/1-59259-266-X:181

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-734-2

  • Online ISBN: 978-1-59259-266-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics