Skip to main content

Analysis of the Carbohydrate Components of Glycosylphosphatidylinositol Structures Using Fluorescent Labeling

  • Protocol
Book cover Protein Lipidation Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 116))

Abstract

Glycosylphosphatidylinositols (GPIs) are a family of structures that contain the structural motif: Manα1-4GlcNH2α1-6myo-Inositol-1-PO4-lipid. This common substructure suggests that this family of molecules is biosynthetically related, and it differentiates them from other glycosylated phosphoinositides, such as the glycosylated phosphatidylinositols of mycobacteria and the glycosylated inositol phosphoceramides of yeasts and plants. The GPI family can be conveniently divided into two groups, based on structural homology and function. The first group (134) is the membrane protein anchors (Fig. 1) which are found covalently linked to the C-termini of a wide variety of externally disposed plasma-membrane proteins throughout the eukaryotes. These GPI anchors afford a stable attachment of proteins to the membrane, and can be viewed as an alternative mechanism of membrane attachment to a singlepass hydrophobic transmembrane peptide domain. For recent reviews of GPI anchor structure, biosynthesis, and function, see refs. 3540. The second group of GPI structures have only been found in protozoan organisms. These molecules exist as free glycophospholipids, such as the glycoinositol phospholipids (GIPLs) of the Leishmania, Trypanosoma cruzi, Leptomonas, Herpetomonas, Phytomonas, and Toxoplasma (35,4145), or are attached to phosphorylated repeating units, as in the lipophosphoglycans (LPGs) of the Leishmania (35,46). This chapter describes protocols specifically designed to analyze the carbohydrate components of protein-linked GPI anchors, although they are also applicable to the GIPLs and, to some extent, the LPGs.

GPI anchor structures. All GPI anchors attached to protein contain the conserved structure shown above, with various substituents (R1–R7) and lipids, as indicated. Some structures contain an additional fatty acyl chain attached to the 2-position of the myo-inositol ring. All metazoan organisms contain at least one, and sometimes two, extra ethanolamine phosphate (EtNPO4) substituents, in addition to the one used as a bridge to the protein C-terminal amino acid. When a substituent is known to be attached to a certain sugar residue, but the linkage position is unknown, this is indicated by a question mark. Square brackets are used to show substituents for which the site of attachment has not been determined. The ± symbol indicates that the associated residue is found on only a proportion of the structures. AEP is 2-aminoethylphosphonate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferguson, M. A. J., Homans, S. W., Dwek, R. A., and Rademacher, T. W. (1988) Glycosyl-phosphatidylinositol moiety that anchors Trypanosoma brucei Variant surface glycoprotein to the membrane. Science 239, 753–759.

    Article  PubMed  CAS  Google Scholar 

  2. Gerold, P., Striepen, B., Reitter, B., Geyer, H., Geyer, R., Reinwald, E., Risse, H. J., and Schwarz, R. T. (1996) Glycosyl-phosphatidylinositols of Trypanosoma congolense: two common precursors but a new protein-anchor. J. Mol. Biol. 261, 181–194.

    Article  PubMed  CAS  Google Scholar 

  3. Field, M. C., Menon, A. K., and Cross, G. A. M. (1991) A glycosylphosphatidylinositol protein anchor from procyclic stage Trypanosoma brucei: lipid structure and biosynthesis. EMBO J. 10, 2731–2739.

    PubMed  CAS  Google Scholar 

  4. Ferguson, M. A. J., Murray, P., Rutherford, H., and McConville, M. J. (1993) A simple purification of procyclic acidic repetitive protein and demonstration of a sialylated glycosyl-phosphatidylinositol membrane anchor. Biochem. J. 291, 51–55.

    PubMed  CAS  Google Scholar 

  5. Bütikofer, P. and Boschung, M. (1995) Glycosyl inositolphospholipid-anchored structures in Herpetomonas davidi. Mol. Biochem. Parasitol. 74, 65–75.

    Article  PubMed  Google Scholar 

  6. Güther, M.L.S., Almeida, M. L. C, Yoshida, N., and Ferguson, M. A. J. (1992) Structural studies on the glycosylphosphatidylinositol membrane anchor of Trypanosoma cruzi 1G7-Antigen. The structure of the glycan core. J. Biol. Chem. 267, 6820–6828.

    PubMed  Google Scholar 

  7. Heise, N., Almeida, M. L. C., and Ferguson, M. A. J. (1995) Characterisation of the lipid moiety of the glycosylphosphatidylinositol anchor of Trypanosoma cruzi 1G7-antigen. Mol. Biochem. Parasitol. 70, 71–84.

    Article  PubMed  CAS  Google Scholar 

  8. Bertello, L. E., Andrews, N. W., and Lederkremer, R. M. (1996) Developmentally regulated expression of ceramide in Trypanosoma cruzi. Mol. Biochem. Parasitol. 79, 143–151.

    Article  PubMed  CAS  Google Scholar 

  9. Couto, A.S., Lederkremer, R. M., Colli, W., and Alves, M. J. M. (1993) The glycosylphosphatidylinositol anchor of the trypomastigote-specific Tc-85 glycoprotein from Trypanosoma cruzi. Metabolic labeling and structural studies. Eur. J. Biochem. 217, 597–602.

    Article  PubMed  CAS  Google Scholar 

  10. Abuin, G., Couto, A. S., de Lederkremer, R. M., Casal, O. L., Galli, C., Colli, W., and Alves, M. J. M. (1996) Trypanosoma cruzi: the TC-85 surface glycoprotein shed by trypomastigotes bears a modified glycosylphosphatidylinositol anchor. Exp. Parasitol. 82, 290–297.

    Article  PubMed  CAS  Google Scholar 

  11. Previato, J.O., Jones, C., Xavier, M. T., Wait, R., Travassos, L. R., Parodi, A. J., and Mendoça-Previato, L. (1995) Structural characterisation of the major glycosylphosphatidylinositol membrane anchored glycoprotein from epimastigote forms of Trypanosoma cruzi strains. J. Biol. Chem. 270, 7241–7250.

    Article  PubMed  CAS  Google Scholar 

  12. Serrano, A. A., Schenkman, S., Yoshida, N., Mehlert, A., Richardson, J. M., and Ferguson, M. A. J. (1995) The lipid structure of the glycosylphosphatidylinositol-anchored mucin-like sialic acid acceptors of Trypanosoma cruzi changes during parasite differentiation from epimastigotes to infective metacyclic trypomastigote forms. J. Biol. Chem. 270, 27,244–27,253.

    Article  PubMed  CAS  Google Scholar 

  13. Schneider, P., Ferguson, M. A. J., McConville, M. J., Mehlert, A., Homans, S. W., and Bordier, C. (1990) Structure of the glycosyl-phosphatidylinositol membrane anchor of the Leishmania major promastigote surface protease. J. Biol. Chem. 265, 16,955–16,964.

    PubMed  CAS  Google Scholar 

  14. McConville, M.J., Collidge, T. A. C., Ferguson, M. A. J., and Schneider, P. (1993) The glycoinositol phospholipids of Leishmania mexicanaI promastigotes. Evidence for the presence of three distinct pathways of glycolipid biosynthesis. J. Biol. Chem. 268, 15,595–15,604.

    PubMed  CAS  Google Scholar 

  15. Tomavo, S., Dubremetz, J.-F., and Schwarz, R. T. (1993) Structural analysis of glycosyl-phosphatidylinositol membrane anchor of the Toxoplasma gondii tachyzoite surface glycoprotein gp23. Biol. Cell 78, 155–162.

    Article  PubMed  CAS  Google Scholar 

  16. Gerold, P., Schofield, L., Blackman, M. J., Holder, A. A., and Schwarz, R. T. (1996) Structural analysis of the glycosyl-phosphatidylinositol membrane anchor of the merozoite surface proteins-1 and-2 of Plasmodium falciparum. Mol. Biochem. Parasitol. 75, 131–143.

    Article  PubMed  CAS  Google Scholar 

  17. Azzouz, N., Striepen, B., Gerold, P., Capdeville, Y., and Schwarz, R. T. (1995) Glycosylinositol-phophoceramide in the free-living protozoan Paramecium primaurelia: modification of core glycans by mannosyl phosphate. EMBO J. 14, 4422–4433.

    PubMed  CAS  Google Scholar 

  18. Fankhauser, C., Homans, S. W., Thomas-Oates, J. E., McConville, M. J., Desponds, C., Conzelmann, A., and Ferguson, M. A. J. (1993) Structures of glycosylphosphatidylinositol membrane anchors from Saccharomyces cerevisiae. J. Biol. Chem. 268, 26365–26374.

    PubMed  CAS  Google Scholar 

  19. Haynes, P.A., Gooley, A. A., Ferguson, M. A. J., Redmond, J. W., and Williams, K. L. (1993) Post-translational modifications of the Dictyostelium discoideum glycoprotein PsA. Glycosylphosphatidylinositol membrane anchor and composition of O-linked oligosaccharides. Eur. J. Biochem. 216, 729–737.

    Article  PubMed  CAS  Google Scholar 

  20. Bütikofer, P., Kuypers, F. A., Shackleton, C., Brodbeck, U., and Stieger, S. (1990) Molecular species analysis of the glycosylphosphatidylinositol anchor of Torpedo marmorata acetylcholinesterase. J. Biol. Chem. 265, 18,983–18,987.

    PubMed  Google Scholar 

  21. Mehlert, A., Varon, L., Silman, I., Homans, S. W., and Ferguson, M. A. J. (1993) Structure of the glycosyl-phosphatidylinositol membrane anchor of acetylcholinesterase from the electric organ of the electric fish, Torpedo californica. Biochem. J. 296, 473–479.

    PubMed  CAS  Google Scholar 

  22. Homans, S.W., Ferguson, M. A. J., Dwek, R. A., Rademacher, T. W., Anand, R., and Williams, A. F. (1988) Complete structure of the glycosyl phosphatidylinositol membrane anchor of rat brain Thy-1 glycoprotein. Nature 333, 269–272.

    Article  PubMed  CAS  Google Scholar 

  23. Stahl, N., Baldwin, M. A., Hecker, R., Pan, K.-M., Burlingame, A. L., and Prusiner, S. B. (1992) Glycosylinositol phospholipid anchors of the scrapie and cellular prion proteins contain sialic acid. Biochemistry 31, 5043–5053.

    Article  PubMed  CAS  Google Scholar 

  24. Mukasa, R., Umeda, M., Endo, T., Kobata, A., and Inoue, K. (1995) Characterisation of glycosylphosphatidylinositol (GPI)-anchored NCAM on mouse skeletal muscle cell line C2C12: the structure of the GPI glycan and release during myogenesis. Arch. Biochem. Biophys. 318, 182–190.

    Article  PubMed  CAS  Google Scholar 

  25. Taguchi, R., Hamakawa, N., Harada-Nishida, M., Fukui, T., Nojima, K., and Ikezawa, H. (1994) Microheterogeneity in glycosylphosphatidylinositol anchor structures of bovine liver 5′-nucleotidase. Biochemistry 33, 1017–1022.

    Article  PubMed  CAS  Google Scholar 

  26. Haas, R., Jackson, B. C., Reinhold, B., Foster, J. D., and Rosenberry, T. L. (1996) Glycoinositol phospholipid anchor and protein C-terminus of bovine erythrocyte acetlcholinesterase: analysis by mass spectrometry and by protein and DNA sequencing. Biochem. J. 314, 817–825.

    PubMed  CAS  Google Scholar 

  27. Brewis, I. A., Ferguson, M. A. J., Mehlert, A., Turner, A. J., and Hooper, N. M. (1995) Structures of the glycosyl-phosphatidylinositol anchors of porcine and human renal membrane dipeptidase. Comprehensive structural studies on the porcine anchor and interspecies comparison of the glycan core structures. J. Biol. Chem. 270, 22,946–22,956.

    Article  PubMed  CAS  Google Scholar 

  28. Deeg, M. A., Humphrey, D. R., Yang, S. H., Ferguson, T. R., Reinhold, V. N., and Rosenberry, T. L. (1992) Glycan components in the glycoinositol phospholipid anchor of human erythrocyte acetylcholinesterase. J. Biol. Chem. 267, 18,573–18,580.

    PubMed  CAS  Google Scholar 

  29. Redman, C. A., Thomas-Oates, J. E., Ogata, S., Ikehara, Y., and Ferguson, M. A. J. (1994) Structure of the glycosylphosphatidylinositol membrane anchor of human placental alkaline phosphatase. Biochem. J. 302, 861–865.

    PubMed  CAS  Google Scholar 

  30. Treumann, A., Lifely, M. R., Schneider, P., and Ferguson, M. A. J. (1995) Primary structure of CD52. J. Biol. Chem. 270, 6088–6099.

    Article  PubMed  CAS  Google Scholar 

  31. Nakano, Y., Noda, K., Endo, T., Kobata, A., and Tomita, M. (1994) Structural study on the glycosyl-phosphatidylinositol anchor and the asparagine-linked sugar chain of a soluble form of CD59 in human urine. Arch. Biochem. Biophys. 311, 117–126.

    Article  PubMed  CAS  Google Scholar 

  32. Sugita, Y., Nakano, Y., Oda, E., Noda, K., Tobe, T., Miura, N.-H., and Tomita, M. (1993) Determination of carboxyl-terminal ersidue and disulfide bonds of MACIF (CD59), a glycosyl-phosphatidylinositol-anchored membrane protein. J. Biochem. 114, 473–477.

    PubMed  CAS  Google Scholar 

  33. Meri, S., Lehto, T., Sutton, C. W., Tyynelä, J., and Baumann, M. (1996) Structural composition and functional characterization of soluble CD59: heterogeneity of the oligosaccharide and glycosylphosphatidylinositol (GPI) anchor revealed by laser-desorption mass spectrometric analysis. Biochem. J. 316, 923–935.

    PubMed  CAS  Google Scholar 

  34. Rudd, P. M., Morgan, B. P., Wormald, M. R., Harvey, D. J., van den Berg, C. W., Davies, S. J., Ferguson, M. A. J., and Dwek, R. A. (1997) The glycosylation of the complement regulatory protein, human erythrocyte CD59. J. Biol. Chem. 272, 7229–7244.

    Article  PubMed  CAS  Google Scholar 

  35. McConville, M. J. and Ferguson, M. A. J. (1993) The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eucaryotes. Biochem. J. 294, 305–324.

    PubMed  CAS  Google Scholar 

  36. Ferguson, M. A. J. (1994) What can GPI do for you? Parasitol. Today 10, 48–52.

    CAS  Google Scholar 

  37. Stevens, V. L. (1995) Biosynthesis of glycosylphosphatidylinositol membrane anchors. Biochem. J. 310, 361–370.

    PubMed  CAS  Google Scholar 

  38. Udenfriend, S. and Kokudula, K. (1995) How glycosyl-phosphatidylinositol anchored membrane proteins are made. Ann. Rev. Biochem. 64, 563–591.

    Article  PubMed  CAS  Google Scholar 

  39. Takeda, J. and Kinoshita, T. (1995) GPI-anchor biosynthesis. TIBS 20, 367–371.

    PubMed  CAS  Google Scholar 

  40. Medof, M. E., Nagarajan, S., and Tykocinski, M. L. (1996) Cell-surface engineering with GPI-anchored proteins. FASEB J. 10, 574–586.

    PubMed  CAS  Google Scholar 

  41. Redman, C. A., Schneider, P., Mehlert, A., and Ferguson, M. A. J. (1995) The glycoinositol-phospholipids of Phytomonas. Biochem. J. 311, 495–503.

    PubMed  CAS  Google Scholar 

  42. Previato, J. O., Mendonca-Previato, L., Jones, C., and Fournet, B. (1992) Structural characterisation of a novel class of glycophosphosphingolipids from the protozoan Leptomonas samueli. J. Biol. Chem. 267, 24,279–24,286.

    PubMed  CAS  Google Scholar 

  43. Routier, F. H., da Silveira, E. X., Wait, R., Jones, C., Previato, J. O., and Mendonca-Previato, L. (1995) Chemical characterisation of glycosylinositolphospholipids of Herpetomonas samuelpessoai. Mol. Biochem. Parasitol. 69, 61–69.

    Article  Google Scholar 

  44. Carreira, J. C., Jones, C., Wait, R., Previato, J. O., and Previato, L. (1996) Structural variation in the glycoinositolphospholipids of different strains of Trypanosoma cruzi. Glycoconj. J. 13, 955–66.

    Article  PubMed  CAS  Google Scholar 

  45. Striepen, B., Zinecker, C. F., Damm, J. B., Melgers, P. A., Gerwig, G. J., Koolen, M., et al. (1997) Molecular structure of the “low molecular weight antigen” of Toxoplasma gondii: a glucose α1-4 N-acetylgucosamine makes free glycosylphosphatidylinositols highly immunogenic. J. Mol. Biol. 266, 797–813.

    Article  PubMed  CAS  Google Scholar 

  46. McConville, M. J., Schnur, L. F., Jaffe, C., and Schneider, P. (1995) Structure of Leishmania liposphosphoglycan: inter-and intra-specific polymorphism in Old World species. Biochem. J. 310, 807–818.

    PubMed  CAS  Google Scholar 

  47. Treumann, A., Güther, M. L. S., Schneider, P., and Ferguson, M. A. J. (1998) Analysis of the carbohydrate and lipid components of glycosylphosphatidylinositol structures, in Methods in Molecular Biology: Glycoscience Protocols (Hounsell, E. F., ed.), Humana, Totowa, NJ, pp. 213–235.

    Google Scholar 

  48. Ferguson, M. A. J. (1992) The chemical and enzymic analysis of GPI fine structure, in Lipid Modification of Proteins: A Practical Approach (Hooper, N. M. and Turner, A. J., eds.), IRL Oxford University Press, pp.191–230.

    Google Scholar 

  49. Schneider, P. and Ferguson, M. A. J. (1995) Microscale analysis of glycosylphosphatidylinositol structures. Meth. Enzymol. 250, 614–630.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Zitzmann, N., Ferguson, M.A.J. (1998). Analysis of the Carbohydrate Components of Glycosylphosphatidylinositol Structures Using Fluorescent Labeling. In: Gelb, M.H. (eds) Protein Lipidation Protocols. Methods in Molecular Biology, vol 116. Humana Press. https://doi.org/10.1385/1-59259-264-3:73

Download citation

  • DOI: https://doi.org/10.1385/1-59259-264-3:73

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-534-8

  • Online ISBN: 978-1-59259-264-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics