Skip to main content

Rapid Identification of Cysteine-Linked Isoprenyl Groups by Metabolic Labeling with [3H]Farnesol and [3H]Geranylgeraniol

  • Protocol
Protein Lipidation Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 116))

Abstract

The posttranslational modification of proteins by the covalent attachment of farnesyl and geranylgeranyl groups to cysteine residues at or near the C-terminus via a thioether bond is now well established in mammalian cells (16). Most isoprenylated proteins are thought to serve as regulators of cell signaling and membrane trafficking. Farnesylation and geranylgeranylation of the cysteinyl residues have been shown to promote both protein-protein and protein-membrane interactions (68). Isoprenylation, and, in some cases, the subsequent palmitoylation, provide a mechanism for the membrane association of polypeptides, which lack a transmembrane domain, and appear to be prerequisite for their in vivo activity (6,9,10).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maltese, W. A. (1990) Posttranslational modification of proteins by isoprenoids in mammalian cells. FASEB J. 4, 3319–3328.

    PubMed  CAS  Google Scholar 

  2. Glomset, J. A., Gelb, M. H., and Farnsworth, C. C. (1990) Prenyl proteins in eukaryotic cells: a new type of membrane anchor. TIBS 15, 139–142.

    PubMed  CAS  Google Scholar 

  3. Clarke, S. (1992) Protein isoprenylation and methylation at carboxyl-terminal cysteine residues. Annu. Rev. Biochem. 61, 355–386.

    Article  PubMed  CAS  Google Scholar 

  4. Schafer, W. R. and Rine, J. (1992) Protein prenylation: genes, enzymes, targets, and functions. Annu. Rev. Genet. 30, 209–237.

    Article  Google Scholar 

  5. Zhang, F. L. and Casey, P. J. (1996) Protein prenylation: molecular mechanisms and functional consequences. Annu. Rev. Biochem. 65, 241–269.

    Article  PubMed  CAS  Google Scholar 

  6. Hancock, J. F., Magee, A. I., Childs, J. E., and Marshall, C. (1989) All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 57, 1167–1177.

    Article  PubMed  CAS  Google Scholar 

  7. Hancock, J. F., Paterson, H., and Marshall, C. J. (1990) A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 63, 133–139.

    Article  PubMed  CAS  Google Scholar 

  8. Hancock, J. F., Cadwallader, K., and Marshall, C. J. (1991) Methylation and proteolysis are essential for efficient membrane binding of prenylated p21K-ras(B). EMBO J. 10, 641–646.

    PubMed  CAS  Google Scholar 

  9. Schafer, W. R., Kim, R., Sterne, R., Thorner, J., Kim, S-H., and Rine, J. (1989) Genetic and pharmacological suppression of oncogenic mutations in RAS genes of yeast and humans. Science 245, 379–385.

    Article  PubMed  CAS  Google Scholar 

  10. Kato, K., Cox, A. D., Hisaka, M. M., Graham, S. M., Buss, J. E., and Der, C. J. (1992) Isoprenoid addition to Ras protein is the critical modification for its membrane association and transforming activity. Proc. Natl. Acad. Sci. USA 89, 6403–6407.

    Article  PubMed  CAS  Google Scholar 

  11. Seabra, M. C., Goldstein, J. L., Sudhof, and Brown, M. S. (1992) Rab geranylgeranyl transferase: a multisubunit enzyme that prenylates GTP-binding proteins terminating in cys-x-cys or cys-cys. J. Biol. Chem. 267, 14,497–14,503.

    PubMed  CAS  Google Scholar 

  12. Grunler J., Ericsson, J., and Dallner, G. (1994) Branch-point reactions in the biosynthesis of cholesterol, dolichol, ubiquinone and prenylated proteins. Biochim. Biophys. Acta 1212, 259–277.

    PubMed  CAS  Google Scholar 

  13. Crick, D. C., Waechter, C. J., and Andres, D. A. (1994) Utilization of geranylgeraniol for protein isoprenylation in C6 glial cells. Biochem. Biophys. Res. Commun. 205, 955–961.

    Article  PubMed  CAS  Google Scholar 

  14. Crick, D. C., Andres, D. A., and Waechter, C. J. (1995) Farnesol is utilized for protein isoprenylation and the biosynthesis of cholesterol in mammalian cells. Biochem. Biophys. Res. Commun. 211, 590–599.

    Article  PubMed  CAS  Google Scholar 

  15. Baxter, A., Fitzgerald, B. J., Hutson, J. L., McCarthy, A. D., Motteram, J. M., Ross, B. C., et al. (1992) Squalestatin 1, a potent inhibitor of squalene synthase, which lowers serum cholesterol in vivo. J. Biol. Chem. 267, 11,705–11,708.

    PubMed  CAS  Google Scholar 

  16. Bergstrom, J. D., Kurtz, M. M., Rew, D. J., Amend, A. M., Karkas, J. D., Bostedor, R. G., et al. (1993) Zaragozic acids: a family of fungal metabolites that are picomolar competitive inhibitors of squalene synthase. Proc. Natl. Acad. Sci. USA 90, 80–84.

    Article  PubMed  CAS  Google Scholar 

  17. Hasumi, K., Tachikawa, K., Sakai, K., Murakawa, S., Yoshikawa, N., Kumizawa, S., and Endo, A. (1993) Competitive inhibition of squalene synthetase by squalestatin 1. J. Antibiot. (Tokyo) 46, 689–691.

    PubMed  CAS  Google Scholar 

  18. Thelin, A., Peterson, E., Hutson, J. L., McCarthy, A. D., Ericcson, J., and Dallner, G. (1994) Effect of squalestatin 1 on the biosynthesis of the mevalonate pathway lipids. Biochim. Biophys. Acta 1215, 245–249.

    PubMed  Google Scholar 

  19. Crick, D. A., Suders, J., Kluthe, C. M., Andres, D. A., and Waechter, C. J. (1995) Selective inhibition of cholesterol biosynthesis in brain cells by squalestatin 1. J. Neurochem. 65, 1365–1373.

    Article  PubMed  CAS  Google Scholar 

  20. Inoue, H., Korenaga, T., Sagami, H., Koyama, T., and Ogura, K. (1994) Phosphorylation of farnesol by a cell-free system from Botryococcus brauni. Biochem. Biophys. Res. Commun. 200, 1036–1041.

    Article  PubMed  CAS  Google Scholar 

  21. Ohnuma, S-I., Watanabe, M., and Nishino, T. (1996) Identification and characterization of geranylgeraniol kinase and geranylgeranyl phosphate kinase from the archebacterium Sulfolobus acidocaldarius. J. Biochem. (Tokyo) 119, 541–547.

    PubMed  CAS  Google Scholar 

  22. Westfall, D., Aboushadi, N., Shackelford, J. E., and Krisans, S. K. (1997) Metabolism of farnesol: phosphorylation of farnesol by rat liver microsomal and peroxisomal fractions. Biochem. Biophys. Res. Commun. 230, 562–568.

    Article  PubMed  CAS  Google Scholar 

  23. Crick, D. C., Andres, D. A., and Waechter, C. J. (1997) Novel salvage pathway utilizing farnesol and geranylgeraniol for protein isoprenylation. Biochem. Biophys. Res. Commun. 237, 483–487.

    Article  PubMed  CAS  Google Scholar 

  24. Kamiya, Y., Sakurai, A., Tamura, S., Takahashi, N., Tsuchiya, E., Abe, K., and Fukui, S. (1979) Structure of rhodotorucine A, a peptidyl factor, inducing mating tube formation in Rhodosporidium toruloides. Agric. Biol. Chem. 43, 363–369.

    CAS  Google Scholar 

  25. Dunphy, P. J., Kerr, J. D., Pennock, J. F., Whittle, K. J., and Feeney, J. (1967) The plurality of long chain isoprenoid (polyprenols) alcohols from natural sources. Biochim. Biophys. Acta 13, 136–147.

    Google Scholar 

  26. Andres, D. A., Shao, H., Crick, D. C., and Finlin, B. S. (1997) Expression cloning of a novel farnesylated protein, RDJ2, encoding a DnaJ protein homologue. Arch. Biochem. Biophys. 346, 113–124.

    Article  PubMed  CAS  Google Scholar 

  27. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  28. Stimmel, J. B., Deschenes, R. J., Volker, C., Stock, J., and Clarke, S. (1990) Evidence for an S-farnesylcysteine methyl ester at the carboxyl terminus of the Saccharomyces cerevisiae RAS2 protein. Biochemistry 29, 9651–9659.

    Article  PubMed  CAS  Google Scholar 

  29. Bansal, V. S. and Vaidya, S. (1994) Characterization of two distinct allyl pyrophosphatase activities from rat liver microsomes. Arch. Biochem. Biophys. 315, 393–399.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Andres, D.A., Crick, D.C., Finlin, B.S., Waechter, C.J. (1998). Rapid Identification of Cysteine-Linked Isoprenyl Groups by Metabolic Labeling with [3H]Farnesol and [3H]Geranylgeraniol. In: Gelb, M.H. (eds) Protein Lipidation Protocols. Methods in Molecular Biology, vol 116. Humana Press. https://doi.org/10.1385/1-59259-264-3:107

Download citation

  • DOI: https://doi.org/10.1385/1-59259-264-3:107

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-534-8

  • Online ISBN: 978-1-59259-264-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics