Skip to main content

The Comet Assay

An Overview of Techniques

  • Protocol
In Situ Detection of DNA Damage

Part of the book series: Methods in Molecular Biology ((MIMB,volume 203))

Abstract

The comet assay is a gel electrophoresis method that is used to visualize and measure DNA strand breaks in individual cells using microscopy. In its simplest form, cells are embedded in agarose on a microscope slide, immersed in a lysis solution to remove lipids and proteins, and exposed to a weak electric field to attract broken, negatively-charged DNA towards the anode. After electrophoresis, DNA is stained using a fluorescent dye, and viewed using a fluorescence microscope. Individual images can then be digitized and analyzed for informative properties such as the distance the DNA has migrated and the percent of DNA that has migrated. These features give an indication of the number of strand breaks present in the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Ostling O. and Johanson K. J. (1984) Microelectrophoretic study of radiationinduced DNA damages in individual mammalian cells. Biochem. Biophys. Res. Commun. 123, 291–298.

    Article  PubMed  CAS  Google Scholar 

  2. Singh N. P., Stephens R. E., and Schneider E. L. (1994) Modifications of alkaline microgel electrophoresis for sensitive detection of DNA damage. Int. J. Radiat. Biol. 66, 23–28.

    Article  PubMed  CAS  Google Scholar 

  3. Fairbairn D. W., Olive P. L., and O’Neill K. L. (1995) The comet assay: A comprehensive review. Mutat. Res. 339, 37–59.

    PubMed  CAS  Google Scholar 

  4. McKelvey-Martin V. J., Green M. H., Schmezer P., Pool-Zobel B. L., De Meo M. P., and Collins A. (1993) The single cell gel electrophoresis assay (comet assay): a European review. Mutat. Res. 288, 47–63.

    PubMed  CAS  Google Scholar 

  5. Tice R. R. and Strauss G. H. (1995) The single cell gel electrophoresis/comet assay: a potential tool for detecting radiation-induced DNA damage in humans. Stem Cells 13, 207–214.

    PubMed  Google Scholar 

  6. Olive P. L. (1999) DNA damage and repair in individual cells: applications of the comet assay in radiobiology. Int. J. Radiat. Biol. 75, 395–405.

    Article  PubMed  CAS  Google Scholar 

  7. Sauvaigo S., Serres C., Signorini N., Emonet N., Richard M. J., and Cadet J. (1998) Use of the single-cell gel electrophoresis assay for the immunofluorescent detection of specific DNA damage. Anal. Biochem. 259, 1–7.

    Article  PubMed  CAS  Google Scholar 

  8. Olive P. L. and Banáth J. P. (1992) Growth fraction measured using the comet assay. Cell Prolif. 25, 447–457.

    Article  PubMed  CAS  Google Scholar 

  9. McKelvey-Martin V. J., Ho E. T., McKeown S. R., Johnston S. R., McCarthy P. J., Rajab N. F., and Downes C. S. (1998) Emerging applications of the single cell gel electrophoresis (Comet) assay. I. Management of invasive transitional cell human bladder carcinoma. II. Fluorescent in situ hybridization Comets for the identification of damaged and repaired DNA sequences in individual cells. Mutagenesis 13, 1–8.

    Article  PubMed  CAS  Google Scholar 

  10. Santos S. J., Singh N. P., and Natarajan A. T. (1997) Fluorescence in situhybridization with comets. Exp. Cell Res. 232, 407–411.

    Article  PubMed  CAS  Google Scholar 

  11. Takahashi M., Saka N., Takahashi H., Kanai Y., Schultz R. M., and Okano A. (1999) Assessment of DNA damage in individual hamster embryos by comet assay. Mol. Reprod. Dev. 54, 1–7.

    Article  PubMed  CAS  Google Scholar 

  12. Olive P. L., Trotter T., Banáth J. P., Jackson S. M., and Le Riche J. (1996) Heterogeneity in human tumour hypoxic fraction using the comet assay. Br. J. ancer 74, S191–S195

    Google Scholar 

  13. Olive P. L. and Banáth J. P. (1993) Induction and rejoining of radiation-induced DNA single-strand breaks: “tail moment” as a function of position in the cell cycle. Mutat. Res. 294, 275–283.

    PubMed  CAS  Google Scholar 

  14. Zheng H. and Olive P. L. (1997) Influence of oxygen on radiation-induced DNA damage in testicular cells of C3H mice. Int. J. Radiat. Biol. 71, 275–282.

    Article  PubMed  CAS  Google Scholar 

  15. Olive P. L. (1995) Use of the comet assay to detect hypoxic cells in murine tumours and normal tissues exposed to bioreductive drugs. Acta Oncol. 34, 301–305.

    Article  PubMed  CAS  Google Scholar 

  16. Olive P. L., Banáth J. P., and Durand R. E. (1990) Detection of etoposide resistance by measuring DNA damage in individual chinese hamster cells. J. Natl. Cancer Inst. 82, 779–783.

    Article  PubMed  CAS  Google Scholar 

  17. Tice R. R., Agurell E., Anderson D., Burlinson B., Hartmann A., Kobayashi H., Miyamae Y., Rojas E., Ryu J. C., and Sasaki Y. F. (2000) Single cell gel/ comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ. Mol. Mutagen 35, 206–221.

    Article  PubMed  CAS  Google Scholar 

  18. Albertini R. J., Anderson D., Douglas G. R., Hagmar L., Hemminki K., Merlo F., Natarajan A. T., Norppa H., Shuker D. E., Tice R., Waters M. D., and Aitio A. (2000) IPCS guidelines for the monitoring of genotoxic effects of carcinogens in humans. International Programme on Chemical Safety. Mutat. Res. 463, 111–172.

    Article  PubMed  CAS  Google Scholar 

  19. Olive P. L., Banáth J. P., and Fjell C. D. (1994) DNA strand breakage and DNA structure influence staining with propidium iodide using the alkaline comet assay. Cytometry 16, 305–312.

    Article  PubMed  CAS  Google Scholar 

  20. LePecq J. B. and Paoletti C. (1967) A fluorescent complex between ethidium bromide and nucleic acids. Physical-chemical characterization. J. Mol. Biol. 27, 87–106.

    Article  PubMed  CAS  Google Scholar 

  21. Olive P. L., Banáth J. P., and Durand R. E. (1997) Detection of subpopulations resistant to DNA-damaging agents in spheroids and murine tumours. Mutat. Res. 375, 157–165.

    PubMed  CAS  Google Scholar 

  22. Bradley M. O., Erickson L. C., and Kohn K. W. (1978) Non-enzymatic DNA strand breaks induced in mammalian cells by fluorescent light. Biochim. Biophys. Acta 520, 11–20.

    PubMed  CAS  Google Scholar 

  23. Olive P. L., Durand R. E., LeRiche J. C., Olivotto I. A., and Jackson S. M. (1993) Gel electrophoresis of individual cells to quantify hypoxic fraction in human breast cancers. Cancer Res. 53, 733–736.

    PubMed  CAS  Google Scholar 

  24. McNamee J. P., McLean J. R., Ferrarotto C. L., and Bellier P. V. (2000) Comet assay: rapid processing of multiple samples. Mutat. Res. 466, 63–69.

    PubMed  CAS  Google Scholar 

  25. Fairbairn D. W., Reyes W. A., Van Grigsby R., and O’Neill K. L. (1994) Laser scanning microscopic analysis of DNA damage in frozen tissues. Cancer Lett. 76, 127–132.

    Article  PubMed  CAS  Google Scholar 

  26. Singh N. P. (1998) A rapid method for the preparation of single-cell suspensions from solid tissues. Cytometry 31, 229–232.

    Article  PubMed  CAS  Google Scholar 

  27. Vijayalaxmi Strauss G. H., and Tice R. R. (1993) An analysis of gamma-rayinduced DNA damage in human blood leukocytes, lymphocytes and granulocytes. Mutat. Res. 292, 123–128.

    Google Scholar 

  28. Myllyperkio M. H. and Vilpo J. A. (1999) Increased DNA single-strand break joining activity in UV-irradiated CD34+ versus CD34-bone marrow cells. Mutat. Res. 425, 169–176.

    PubMed  CAS  Google Scholar 

  29. Kusukawa N., Ostrovsky M. V., and Garner M. M. (1999) Effect of gelation conditions on the gel structure and resolving power of agarose-based DNA sequencing gels. Electrophoresis 20, 1455–1461.

    Article  PubMed  CAS  Google Scholar 

  30. Singh N. P., McCoy M. T., Tice R. R., and Schneider E. L. (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175, 184–191.

    Article  PubMed  CAS  Google Scholar 

  31. Collins A. R., Dusinska M., Gedik C. M., and Stetina R. (1996) Oxidative damage to DNA: do we have a reliable biomarker? Environ. Health Perspect. 104 Suppl 3, 465–469.

    Article  PubMed  CAS  Google Scholar 

  32. Collins A. R., Duthie S. J., and Dobson V. L. (1993) Direct enzymic detection of endogenous oxidative base damage in human lymphocyte DNA. Carcinogen. 14, 1733–1735.

    Article  CAS  Google Scholar 

  33. Boiteux S., O’Connor T. R., Lederer F., Gouyette A., and Laval J. (1990) Homogeneous Escherichia coli FPG protein. A DNA glycosylase which excises imidazole ring-opened purines and nicks DNA at apurinic/apyrimidinic sites. J. Biol. Chem. 265, 3916–3922.

    PubMed  CAS  Google Scholar 

  34. Asahara H., Wistort P. M., Bank J. F., Bakerian R. H., and Cunningham R. P. (1989) Purification and characterization of Escherichia coli endonuclease III from the cloned nth gene. Biochemistry 28, 4444–4449.

    Article  PubMed  CAS  Google Scholar 

  35. Banath J. P., Wallace S. S., Thompson J., and Olive P. L. (1999) Radiationinduced DNA base damage detected in individual aerobic and hypoxic cells with endonuclease III and formamidopyrimidine-glycosylase. Radiat. Res. 151, 550–558.

    Article  PubMed  CAS  Google Scholar 

  36. Pouget J. P., Ravanat J. L., Douki T., Richard M. J., and Cadet J. (1999) Measurement of DNA base damage in cells exposed to low doses of gamma-radiation: comparison between the HPLC-EC and comet assays. Int. J. Radiat. Biol. 75, 51–58.

    Article  PubMed  CAS  Google Scholar 

  37. Olive P. L. and Johnston P. J. (1997) DNA damage from oxidants: influence of lesion complexity and chromatin organization. Oncol. Res. 9, 287–294.

    PubMed  CAS  Google Scholar 

  38. Olive P. L., Frazer G., and Banáth J. P. (1993) Radiation-induced apoptosis measured in TK6 human B lymphoblast cells using the comet assay. Radiat. Res. 136, 130–136.

    Article  PubMed  CAS  Google Scholar 

  39. Ward T. H. and Marples B. (2000) Technical report: SYBR Green I and the improved sensitivity of the single-cell electrophoresis assay. Int. J. Radiat. Biol. 76, 61–65.

    Article  PubMed  CAS  Google Scholar 

  40. Cerda H., Delincee H., Haine H., and Rupp H. (1997) The DNA ‘comet assay’ as a rapid screening technique to control irradiated food. Mutat. Res. 375, 167–181.

    PubMed  CAS  Google Scholar 

  41. Woods J. A., O’Leary K. A., McCarthy R. P., and O’Brien N. M. (1999) Preservation of comet assay slides: comparison with fresh slides. Mutat. Res. 429, 181–187.

    PubMed  CAS  Google Scholar 

  42. Olive P. L., Banáth J. P., and Durand R. E. (1990) Heterogeneity in radiationinduced DNA damage and repair in tumor and normal cells measured using the “comet” assay. Radiat. Res. 122, 86–94.

    Article  PubMed  CAS  Google Scholar 

  43. Helma C. and Uhl M. (2000) A public domain image-analysis program for the single-cell gel-electrophoresis (comet) assay. Mutat. Res. 466, 9–15.

    PubMed  CAS  Google Scholar 

  44. Olive P. L. and Banáth J. P. (1993) Detection of DNA double-strand breaks through the cell cycle after exposure to X-rays, bleomycin, etoposide and 125IdUrd. Int. J. Radiat. Biol. 64, 349–358.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Olive, P.L. (2002). The Comet Assay. In: Didenko, V.V. (eds) In Situ Detection of DNA Damage. Methods in Molecular Biology, vol 203. Humana Press. https://doi.org/10.1385/1-59259-179-5:179

Download citation

  • DOI: https://doi.org/10.1385/1-59259-179-5:179

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-952-0

  • Online ISBN: 978-1-59259-179-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics