Skip to main content

The Study of Membrane- or Receptor-Bound Neuropeptides by NMR

  • Protocol
Neuropeptide Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 73))

  • 480 Accesses

Abstract

An X-ray crystal structure of a neuropeptide bound to its native receptor protein would provide a wealth of information concerning the structural requirements for ligand-receptor binding. Unfortunately, many neuropeptide-protein complexes are very difficult, if not impossible, to obtain as a single crystal. This difficulty prohibits the use of X-ray crystallography to determine the structure of neuropeptide-receptor complexes. Other than X-ray crystallography, nuclear magnetic resonance spectroscopy (NMR) is the only spectroscopic technique that can provide structural information at atomic resolution (1). The very large size of most neuropeptide receptor proteins (300–600 amino acid residues) makes determination of the three-dimensional structure of the neuropeptide-receptor complex by NMR also very difficult. To date, the use of sequence-specific resonance assignment methods has been limited to uniformly isotope labeled proteins containing 100–150 amino acid residues (1). Owing to overlapping resonances from the receptor, determination of the three-dimensional structure of only the bound ligand may also require uniform isotopic labeling (15N, 13C) of the neuropeptide. In light of the difficulties involved in the direct observation of neuropeptide-receptor complexes, other indirect methods must be employed to obtain information concerning possible biologically active conformations of a neuropeptide. One method extensively used by medicinal chemists involves the preparation and biological evaluation of a large number of conformationally restrained analogs of the neuropeptide. The three-dimensional structures of analogs with good and bad biological activity are then determined by NMR. These structures are then analyzed in terms of the observed biological activity in order to provide insight into the biologically active conformations of the neuropeptide. This approach is effective, but it is very time consuming, requiring the syntheses and biological evaluation of a large number of compounds. The conformational analysis of neuropeptides themselves has provided limited structural information. Most neuropeptides are small (<25 amino acid residues) linear polypeptides lacking a defined secondary structure in aqueous environment (2,3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oschkinat, H., Muller, T., and Dieckmann, T. (1994) Protein structure determination with three-and four-dimensional nmr spectroscopy. Angew. Chem. Int. Ed. Engl. 33, 277–293.

    Article  Google Scholar 

  2. Hicks, R. P., Beard, D. J., and Young, J. K. (1992) The interactions of neuropeptides with membrane model systems: a case study. Biopolymers 32, 85–96.

    Article  PubMed  CAS  Google Scholar 

  3. Young, J. K., Anklin, C., and Hicks, R. P. (1994) Two-dimensional nmr and molecular modeling investigations of the neuropeptide substance P in the presence of SDS micelles. Biopolymers 34, 1449–1462.

    Article  PubMed  CAS  Google Scholar 

  4. Hruby, V. J., Krstenansky, J. L., and Cody, W. L. (1984) Recent progress in the rational design of peptide hormones and neurotransmitters, in Annual Reports in Medicinal Chemistry-22, Academic, New York.

    Google Scholar 

  5. Surewicz, W. K. and Mantsch, H. H. (1988) Conformational properties of angiotensin II in aqueous solution and in a lipid environment: a Fourier transform infrared spectroscopic investigation. J. Am. Chem. Soc. 110, 4412–4414.

    Article  CAS  Google Scholar 

  6. Rizo, J., Blanco, F. J., Kobe, B., Bruch, M. D., and Gierasch, L. M. (1993) Conformational behavior of Escherichia coli ompA signal peptides in membrane mimetic environments. Biochemistry 32, 4881–4894.

    Article  PubMed  CAS  Google Scholar 

  7. Convert, O., Duplaa, H., Lavielle, S., and Chassaing, G. (1991) Influence of the replacement of ammo acids by its D-enantiomer in the sequence of substance P 2._Conformational analysis by nmr and energy calculations. Neuropeptides 19, 259–270.

    Article  PubMed  CAS  Google Scholar 

  8. Dempsey, C. E. and Watts, A. (1987) A deuterium and phosphorus-31 nmr study of the interaction of melittin with dimyristoylphosphatidylcholine bilayers and the effects of contaminating phospholipase A2. Biochemistry 26, 5803–5811.

    Article  PubMed  CAS  Google Scholar 

  9. Batenburg, A. M., van Esch, J. H., and de Kruijff, B. (1988) Melittin-induced changes of the microscopic structure of phosphatidylethanolamines, Biochemistry 27, 2324–2331.

    Article  PubMed  CAS  Google Scholar 

  10. Lauterwein, J., Bosch, C., Brown, L. R., and Wuthrich, K. (1979) Physicochemical studies of the protein-lipid interactions in melittin containing micelles. Biochim. Biophys. Acta. 556, 244–264.

    Article  PubMed  CAS  Google Scholar 

  11. Brown, L. R. (1979) Use of fully deuterated micelles for the conformational studies of membrane proteins by high resolution 1H nmr. Biochim. Biophys. Acta. 557, 135–148.

    Article  PubMed  CAS  Google Scholar 

  12. Zetta, L. and Kaptein, R. (1984) Interaction of β-endorphin with sodium dodecyl sulfate in aqueous solution 1H nmr investigation. Eur. J. Biochem. 145, 181–186.

    Article  PubMed  CAS  Google Scholar 

  13. Zetta, L., De Marco, A., and Zannoni, G. (1988) Evidence for a folded structure of met-enkephalin in membrane mimetic systems: 1H-nmr studies in sodium dodecylsulfate, lyso-phosphatidylcholine and mixed lyso-phosphatidylcholine/sulfatide micelles. Biopolymers 25, 2315–2323.

    Article  Google Scholar 

  14. Deber, C. M. and Behnam, B. A. (1984) Role of membrane lipids in peptide hormone function: binding of enkephalin to micelles. Proc. Natl. Acad. Sci. USA 81, 61–65.

    Article  PubMed  CAS  Google Scholar 

  15. Graham, W. H., Carter, E. S., and Hicks, R. P. (1992) Conformational analysis of met-enkephalin in both aqueous solution and in the presence of sodium dodecyl sulfate micelles using multidimensional nmr and molecular modeling. Biopolymers 32, 1755–1764.

    Article  PubMed  CAS  Google Scholar 

  16. Bystrov, V. F., Arseniev, A. S., Barsukov, J. L., and Lomize, A. L. (1986) The 2D nmr of single and double stranded helixes of gramicidin A micelles and solution. Bull. Magn. Resonance 8, 84–94.

    CAS  Google Scholar 

  17. Killian, J. A, Nicholson, L. K., and Cross, T. A. (1988) Solid state 15N-nmr evidence that gramicidin A can adopt two different backbone conformations in dimyristoylphosphatidylcholine model membrane preparations. Biochim. Biophys. Acta. 943, 535–540.

    Article  PubMed  CAS  Google Scholar 

  18. Nicholson, L. K., Moll, F., Mixon, T. E., Lograsso, P. V., Lay, J. C., and Cross, T. A. (1987) Solid state 15N nmr of oriented lipid bilayer bound gramicidin A. Biochemistry 26, 6621–6626.

    Article  PubMed  CAS  Google Scholar 

  19. Kyle, D. J., Chakravarty, S., Sinsko, J. A., and Stormann, T. M. (1994) A proposed model of bradykinin bound to the rat B2 receptor and its utility for drug design. J. Med. Chem. 37, 1347–1354.

    Article  PubMed  CAS  Google Scholar 

  20. Kyle, D. J., Hicks, R. P., Blake, P. R., and Klimkowski, V. J. (1990) Conformational properties of bradykinin and bradykinin antagonists, in Bradykinin Antagonists: Basic and Clinical Research (Burch, R. M., ed.), Marcel Dekker, New York, pp 131–146.

    Google Scholar 

  21. Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E., and Downing, K. H. (1990) Model for the structure of bacteriorhodopsin based on high resolution electron cryomicroscopy. J. Mol. Biol. 213, 899–929.

    Article  PubMed  CAS  Google Scholar 

  22. Deber, C. M. and Behnam, B. A. (1985) Transfer of peptide hormones from aqueous to membrane phases. Biopolymers 24, 105–116.

    Article  CAS  Google Scholar 

  23. Woolley, G. A. and Deber, C. M. (1987) Peptides in membranes: lipid-induced secondary structure of substance P. Biopolymers. 26, S109–S121.

    Article  PubMed  Google Scholar 

  24. Hagler, A. T., Osguthorpe, D. J., Dauber-Osguthorpe, P., and Hempel, J. C. (1985) Dynamics and conformational energetics of a peptide hormone: vasopressin. Science 227, 1309–1315.

    Article  PubMed  CAS  Google Scholar 

  25. Wu, C. S. C., Hachimori, A., and Yang, J. T. (1982) Lipid-induced conformation of some peptide hormones and bioactive oligopeptides: predominance of helix over β form. Biochemistry 21, 4556–4562.

    Article  PubMed  CAS  Google Scholar 

  26. Keniry, M. A. and Smith, R. (1980) A 13C nmr spin-lattice relaxation study of the interaction of myelin proteins with lipid vesicles. Biophys. Chem. 12, 133–141.

    Article  PubMed  CAS  Google Scholar 

  27. Godici, P. E. and Landsberger, F. R. (1974) Dynamic structures of lipid membranes. Carbon-13 nuclear magnetic resonance study using spin labels. Biochemistry 13, 362–368.

    Article  PubMed  CAS  Google Scholar 

  28. Gent, M. P. and Prestegard, J. H. (1977) Nuclear magnetic relaxation and molecular motion in phospholipid bilayer membranes. J. Mag. Res. 25, 243–247.

    CAS  Google Scholar 

  29. Lee, S. C., Russell, A. F., and Laidig, W. D. (1990) Three-dimensional structure of bradykinin in SDS micelles. Int. J. Pept. Prot. Res. 35, 367–377.

    Article  CAS  Google Scholar 

  30. Young, J. K. and Hicks, R. P. (1994) NMR and molecular modeling investigation of the neuropeptide bradykinin in three different solvents systems. DMSO, 9∶1 dioxane/water. and in the presence of 7.4 mM lyso phosphatidylcholine micelles. Biopolymers 34, 611–623.

    Article  PubMed  CAS  Google Scholar 

  31. Reddy, A. P., Tallon, M. A., Becker, J. M., and Naider, F. (1994) Biophysical studies on fragments of the α-factor receptor protein. Biopolymers 34 679–489.

    Article  PubMed  CAS  Google Scholar 

  32. Hawrot, E., Colson, K. L., Armitage, I. M., and Song, G.-Q. (1990) in Bungarotoxin binding to acetylcholine receptor-derived synthetic peptides analyzed by nmr in Frontiers of NMR in Molecular Biology. New York (Love, D., Armitage, I. M., and Patel, D., ed.), Alan R. Liss, pp. 27–36.

    Google Scholar 

  33. Bommakanti, R. K., Dratz, E. A., Sremson, D. W., and Jesaitis, A. J. (1995) Extensive Contact between G12 and N-formyl peptide receptor of human neutrophils: mapping of the binding sites using receptor-mimetic peptides. Biochemistry 34, 6720–6728.

    Article  PubMed  CAS  Google Scholar 

  34. Hamm, H. E., Deretia, D., Arendt, A., Hargrave, P. A., Konig, B., and Hoffmann, K. D. (1988) Site of protein binding to rhodopsin mapped with synthetic peptides from the alpha subunit. Science 241, 832–835.

    Article  PubMed  CAS  Google Scholar 

  35. Smith, G. P. and Scott, J. K. (1993) Libraries of peptides and proteins displayed on filamentous phage. Methods Enzymol. 217, 228–257.

    Article  PubMed  CAS  Google Scholar 

  36. Wand, A. J. and Short, J. H. (1994) Nuclear magnetic resonance studies of protein-peptide complexes. Methods Enzymol. 239, 700–717.

    Article  PubMed  CAS  Google Scholar 

  37. Bax, A., Marzilli, L. G., and Summers, M. F. (1987) New insights into the solution behavior of cobalamin, studies of the base-off form of coenzyme B12 using modern two-dimensional nmr methods. J. Am. Chem. Soc. 109, 566–574.

    Article  CAS  Google Scholar 

  38. Wishart, D. S., Sykes, B. D., and Richards, F. M. (1992) The chemical shift index, a fast and simple method for the assignment of protein secondary structure through nmr spectroscopy. Biochemistry 31, 1647–1651.

    Article  PubMed  CAS  Google Scholar 

  39. Wishart, D. S. and Sykes, B. D. (1994) Chemical shifts as a tool for structure determination. Methods Enzymol. 239, 363–392.

    Article  PubMed  CAS  Google Scholar 

  40. Spera, S. and Bax, A. (1991) Empirical correlation between protein backbone conformation and the Cα and Cβ nmr chemical shifts. J. Am. Chem. Soc. 113, 5490–5492.

    Article  CAS  Google Scholar 

  41. Ikura, M., Kay, L. E., and Bax, A. (1990) A novel approach for sequential assignment of 1H, 13C, and 15N spectra of larger proteins, heteronuclear triple-resonance three-dimensional nmr spectroscopy—application to calmodulin. Biochemistry 29, 4659–4667.

    Article  PubMed  CAS  Google Scholar 

  42. Powers, R., Garrett, D. S., March, C. J., Frieden, E. A., Gronenborn, A. M., and Clore, G. M. (1992) 1H, 15N, 13C, and 13CO. Assignments of human interleukin-4 using three-dimensional double-and triple-resonance heteronuclear magnetic resonance spectroscopy. Biochemistry. 31, 4334–4346.

    Article  PubMed  CAS  Google Scholar 

  43. Fesik, S. W., Gampe, R. T., Eaton, H. L., Gemmecker, G., Olejniczak, E. T., Nero, P., Holzman, T. F., Egan, D. A., Edalij, R., Simmer, R., Helfrich, R., Hochlowski, J., and Jackson, M. (1991) NMR studies of [U-13C] cyclosporine. A bound to cyclophilin: bound conformation and portions of cyclosporin involved in binding. Biochemistry 30, 6574–6583.

    Article  PubMed  CAS  Google Scholar 

  44. Lippens, G., Hallenga, K., Van Belle, D., Wodak, S. J., Nirmala, N. R., Hill, P., Russell, K. C., Smith, D. D., and Hruby, V. J. (1993) Transfer nuclear overhauser effect study of the conformation of oxytocin bound to bovine neurophysin I. Biochemistry 32, 9423–9434.

    Article  PubMed  CAS  Google Scholar 

  45. Clore, G. M. and Gronenborn, A. M., eds. (1993) NMR of Proteins, CRC, Boca Raton, FL.

    Google Scholar 

  46. Evans, J. N. S. (1995) Biomolecular NMR Spectroscopy, Oxford University Press, New York.

    Google Scholar 

  47. Wuthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York.

    Google Scholar 

  48. Braunschweiler, L. and Ernst, R. R. (1983) Coherence transfer by isotropic mixing: application to proton correlation spectroscopy. J. Magn. Reson. 53, 521–528.

    CAS  Google Scholar 

  49. Bax, A. and Davis, D. G. (1985) Practical aspects of two-dimensional transverse noe spectroscopy. J. Magn. Reson. 63, 207–213.

    CAS  Google Scholar 

  50. States, D. J., Haberkorn, R. A., and Rubin, D. J. (1982) A two-dimensional nuclear overhauser experiment with pure absorption phase in four quadrants. J. Magn. Reson. 48, 286–292. phenson, S. L. and Kenny, A. J. (1987) Metabolism of neuropeptides. Hydrolysis of the angiotensins, bradykinin, substance P and oxytocin by pig kidney microvillar membranes. Biochem. J. 241, 237–247.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc. Totowa, NJ

About this protocol

Cite this protocol

Hicks, R.P. (1997). The Study of Membrane- or Receptor-Bound Neuropeptides by NMR. In: Irvine, G.B., Williams, C.H. (eds) Neuropeptide Protocols. Methods in Molecular Biology™, vol 73. Humana Press. https://doi.org/10.1385/0-89603-399-6:185

Download citation

  • DOI: https://doi.org/10.1385/0-89603-399-6:185

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-399-3

  • Online ISBN: 978-1-59259-559-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics