Skip to main content

Part of the book series: Methods in Molecular Biology ((MIMB,volume 48))

Abstract

High-intensity, pulsed electrical shock is deliberately applied to the heart in the clinical setting for the treatment of cardiac arrhythmia, e.g., during defibrillation. However, overdoses of electrical shock can result in toxic instead of therapeutic effects (1). Successful defibrillation is thought to occur when the bulk of the heart is subjected to a minimum level of potential gradient (2). Unfortunately, it is difficult to achieve a uniform intensity throughout the heart (3) or even underneath the shock electrode (4). In practice, the intensity will be much higher at the electrodes, by perhaps as much as 25 times the minimum level of gradient (5,6). At high levels of shock, a multitude of pathological effects can arise in these regions of high potential gradients. For example, morphological and ultrastructural changes in tissue are well documented (7). Another major consequence of the resulting myocardial injury in the heart is production of arrhythmias (8,9), which may result in unsuccessful defibrillation. It is well known that in defibrillation success curves, there is an optimal level of shock above which the success for defibrillation decreases (10). Undesirable side effects include conduction block (11), loss of pacemaker activity (9), decreased level of excitability (12), idioventricular beats (13), and runs of ventricular tachyarrhythmia (6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ideker, R. E., Hillsley, R. E., and Wharton, J. M. (1992) Shock strength for the implantable defibrillator: can you have too much of a good thing? Pacing Clin. Electrophysiol. 15, 841–844.

    Article  PubMed  CAS  Google Scholar 

  2. Ideker, R. E., Wolf, P. D., and Tang, A. S. L. (1994) Mechanisms of defibrillation, in Defibrillation of the Heart (Tacker, W. A., ed.), Mosby, Baltimore, MD, pp. 15–45.

    Google Scholar 

  3. Ideker, R. E., Wolf, P. D., Alferness, C., Krassowska, W., and Smith, W. M. (1991) Current concepts for selecting the location, size and shape of defibrillation electrodes. Pacing Clin. Electrophysiol. 14(Part I), 227–240.

    Article  PubMed  CAS  Google Scholar 

  4. Kim, Y., Zieber, H. G., and Wang, F. E. (1990) Uniformity of current density under stimulating electrodes. Crit. Rev. Biomed. Eng. 17, 585–619.

    PubMed  CAS  Google Scholar 

  5. Tang, A. S. L., Wolf, P. D., Afework, Y., Smith, W. M., and Ideker, R. E. (1992) Three-dimensional potential gradient fields generated by intracardiac catheter and cutaneous patch electrodes. Circulation 85, 1857–1864.

    PubMed  CAS  Google Scholar 

  6. Wharton, J., et al. (1992) Cardiac potential and potential gradient fields generated by single, combined, and sequential shocks during ventricular fibrillation. Circulation 85, 1510–1523.

    PubMed  CAS  Google Scholar 

  7. Van Fleet, J. F., and Tacker, W. A. (1994) Cardiac damage from transchest and ICD defibrillator shocks, in Defibrillation of the Heart (Tacker, W. A., ed.), Mosby, Baltimore, MD, pp. 259–298.

    Google Scholar 

  8. Tung, L., Tovar, O., Neunlist, M., Jain, S. K., and O’Neill, R. J. (1994) Effects of strong electrical shock on cardiac muscle tissue. Ann. NY Acad. Sci. 720, 160–175.

    Article  PubMed  CAS  Google Scholar 

  9. Jones, J. L. (1994) Waveforms for implantable cardioverter defibrillators (ICDs) and transchest defibrillation, in Defibrillation of the Heart (Tacker, W. A., ed.), Mosby, Baltimore, MD, pp. 46–81.

    Google Scholar 

  10. Schuder, J. C., Gold, J. H., Stoeckle, H., McDaniel, W. C., and Cheung, K. N. (1983) Transthoracic ventricular defibrillation in the 100 kg calf with symmetrical one-cycle bidirectional wave stimuli. I.E.E.E. Trans. Biomed. Eng. 30, 415–422.

    Article  CAS  Google Scholar 

  11. Yabe, S., Smith, W. M., Daubert, J. P., Wolf, P. D., Rollins, D. L., and R. E. Ideker, R. E. (1990) Conduction disturbances caused by high current density electric fields. Circ. Res. 66, 1190–1203.

    PubMed  CAS  Google Scholar 

  12. Guarnieri, T., et al. (1988) Increased pacing threshold after an automatic defibrillator shock in dogs: effects of Class I and Class II antiarrhythmic drugs. Pacing Clin. Electrophysiol. 11, 1324–1330.

    Article  PubMed  CAS  Google Scholar 

  13. Witkowski, F. X., Penkoske, P. A., and Plonsey, R. (1990) Mechanism of cardiac defibrillation in open-chest dogs with unipolar DC-coupled simultaneous activation and shock potential recordings. Circ. 82, 244–260.

    CAS  Google Scholar 

  14. Tung, L. (1992) Electrical injury to heart muscle cells, in Electrical Trauma: The Pathophysiology, Manifestations, and Clinical Management (Lee, R. C., Cravalho, E. G., and Burke, J. F., eds.), University of Cambridge Press, Cambridge, pp. 361–400.

    Chapter  Google Scholar 

  15. Tung, L., and Borderies, J.-R. (1992) Analysis of electrical excitation of cardiac muscle cells. Biophys. J. 63, 371–386.

    Article  PubMed  CAS  Google Scholar 

  16. Jones, J. L., Jones, R. E., and Balasky, G. (1987) Microlesion formation in myocardial cells by high-intensity electric field stimulation. Am. J. Physiol. 253, H480–H486.

    PubMed  CAS  Google Scholar 

  17. Bonvallet, R., and Christé, G. (1988) Membrane responses to large hyperpolarizations in trabecles and single cells of frog atrium. Gen. Physiol. Biophys. 7, 433–477.

    PubMed  CAS  Google Scholar 

  18. O’Neill, R. J. and Tung, L. (1991) A cell-attached patch clamp study of the electropermeabilization of amphibian cardiac cells. Biophys. J. 59, 1028–1039.

    Article  CAS  Google Scholar 

  19. Tovar, O., and Tung, L. (1992) Electroporation and recovery of the cardiac cell membrane with rectangular voltage pulses. Am. J. Physiol. 263, H1128–H1136.

    PubMed  CAS  Google Scholar 

  20. Jones, J., Lepeschkin, E., Jones, R. E., and Rush, S. (1978) Response of cultured myocardial cells to countershock-type electric field stimulation. Am. J. Physiol. 235, H214–H222.

    PubMed  CAS  Google Scholar 

  21. Hoffman, B. F., Cranefield, P. F., Lepeschkin, E., Surawicz, B., and Herrlich, H. C. (1959) Comparison of cardiac monophasic action potentials recorded by intracellular and suction electrode. Am. J. Physiol. 111, 177–186.

    Google Scholar 

  22. Salama, G. (1988) Optical measurement of transmembrane potential in heart, in Spectroscopic Membrane Probes, vol III (Loew, L., ed.), CRC, Boca Raton, FL, pp. 137–199.

    Google Scholar 

  23. Neunlist, M., Zou, S., and Tung, L. (1992) Design and use of an “optrode” for optical recordings of cardiac action potentials. Pflugers Arch. 420, 611–617.

    Article  PubMed  CAS  Google Scholar 

  24. Dillon, S. (1991) Optical recordings in the rabbit heart show that defibrillation strength shocks prolong the duration of depolarization and the refractory period. Circ. Res. 69, 842–856.

    PubMed  CAS  Google Scholar 

  25. Neunlist, M., and Tung, L. (1994) Optical recordings of ventricular excitability of frog heart by an extracellular stimulating point electrode. Pac. Clin. Electrophysiol. 17, 1641–1654.

    Article  CAS  Google Scholar 

  26. Fogelson, L. J., Tung, L., and Thakor, N. V. (1988) Electrophysiologic depression in myocardium by defibrillation-level shocks. Proc. Annu. Int. Conf. I.E.E.E. Eng. Med. Biol. Soc. 10, 963–964.

    Google Scholar 

  27. Knisley, S. B., Smith, W. M., and Ideker, R. E. (1994) Prolongation and shortening of action potentials by electrical shocks in frog ventricular muscle. Am. J. Physiol. 266, H2348–H2358.

    PubMed  CAS  Google Scholar 

  28. Kodama, I., Shibata, N., Sakuma, I., Mitsui, K., Iida, M., Suzuki, R., Fukui, Y., Hosoda, S., and Toyama, J. (1994) After effects of high-intensity DC stimulation on the electromechanical performance of ventricular muscle. Am. J. Physiol. 267, H248–H258.

    PubMed  CAS  Google Scholar 

  29. Li, H. G., Jones, D. L., Yee, R., and Klein, G. J. (1991) Defibrillation shocks increase myocardial pacing threshold: an intracellular microelectrode study. Am. J. Physiol. 260, H1973–H1979.

    PubMed  CAS  Google Scholar 

  30. Tung, L., and Neunlist, M. (1994) Asymmetrical injury effects of high intensity anodal and cathodal shock on cardiac transmembrane potentials (abstr.). Am. Heart J. 128, 634.

    Article  Google Scholar 

  31. Mulligan, M. R., O’Neill, R. J., Zei, P., and Tung, L. (1988) Graded effects of pulsed electric fields on contractility of single heart cells. Proc. Annu. Int. Conf. I.E.E.E. Eng. Med. Biol. Soc. 10, 902–903.

    Google Scholar 

  32. Tung, L., Sliz, N., and Mulligan, M. R. (1991) Influence of electrical axis of stimulation on excitation of cardiac muscle cells. Circ. Res. 69, 722–730.

    PubMed  CAS  Google Scholar 

  33. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J. (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85–100.

    Article  PubMed  CAS  Google Scholar 

  34. Lerman, B. B., Halperin, H. R., Tsitlik, J. E., Brin, K., Clark, C. W., and Deale, O. C. (1987) Relationship between canine transthoracic impedance and defibrillation threshold. Evidence for current-based defibrillation. J. Clin. Invest. 80, 797–803.

    Article  PubMed  CAS  Google Scholar 

  35. Geddes, L. A., and Baker, L. E. (1989) Principles of Applied Biomedical Instrumentation, 3rd ed., Wiley, New York, pp. 315–452.

    Google Scholar 

  36. Fedida, D., Sethi, S., Mulder, B. J., and ter Keurs, H. E. (1990) An ultracompliant glass microelectrode for intracellular recording. Am. J. Physiol. 258, C164–C170.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Humana Press Inc.

About this protocol

Cite this protocol

Tung, L. (1995). Electroporation of Cardiac Cells. In: Nickoloff, J.A. (eds) Animal Cell Electroporation and Electrofusion Protocols. Methods in Molecular Biology, vol 48. Humana Press. https://doi.org/10.1385/0-89603-304-X:253

Download citation

  • DOI: https://doi.org/10.1385/0-89603-304-X:253

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-304-7

  • Online ISBN: 978-1-59259-535-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics