Skip to main content

Protein Folding Kinetics

  • Protocol
Protein Stability and Folding

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 40))

Abstract

The aim of protein folding studies is to understand the relationship between the information encoded in the linear amino acid sequence of a polypeptide chain and its three-dimensional structure. The elucidation of the kinetic folding mechanism of a protein is the first step on the way to characterize its complete folding pathway. Subsequent steps comprise the characterization of transiently formed intermediates and of the transition states between the various states of the protein. A folding pathway is understood when all transient intermediates and the transition states between them are characterized. This chapter deals with several aspects of the process of determining folding pathways. The elucidation of kinetic folding mechanisms under various solvent conditions will be described and methods used in the characterization of the transition states for individual folding reactions will be discussed. The detailed characterization of folding intermediates is described in Chapters 13 and Chapter 15.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jaenicke, R. (1987) Progr, Biophys. Mol. Biol. 49, 117–237.

    Article  CAS  Google Scholar 

  2. Garel, J.-R. (1992) in Protein Folding (Creighton, T. E., ed.), Freeman, New York, pp. 405–454.

    Google Scholar 

  3. Privalov, P. L. and Khechinashvili, N. N. (1974) J. Mol. Biol. 86, 665–684.

    Article  PubMed  CAS  Google Scholar 

  4. Garel, J.-R. and Baldwin, R. L. (1973) Proc. Natl. Acad. Sei. USA 70, 3347–3351.

    Article  CAS  Google Scholar 

  5. Brandts, J. F., Halvorson, H. R., and Brennan, M. (1975) Biochemistry 14, 4953–4963.

    Article  PubMed  CAS  Google Scholar 

  6. Grathwohl, C. and Wüthrich, K. (1976) Biopolymers 15, 2025–2041.

    Article  PubMed  CAS  Google Scholar 

  7. Goto, Y. and Hamaguchi, K. (1982) J. Mol. Biol. 156, 91–910.

    Google Scholar 

  8. Kelley, R. F. and Richards, F. M. (1987) Biochemistry 26, 6765–6774.

    Article  PubMed  CAS  Google Scholar 

  9. Wood, L. C, White, T. B., Ramdas, L., and Nall, B. T. (1988) Biochemistry 27, 8562–8568.

    Article  PubMed  CAS  Google Scholar 

  10. Kiefhaber, T., Grunert, H. P., Hahn, U., and Schmid, F. X. (1990) Biochemistry 29, 6475–6480.

    Article  PubMed  CAS  Google Scholar 

  11. Schmid, F. X. (1992) in Protein Folding (Creighton, T E., ed.), Freeman, New York, pp. 197–239.

    Google Scholar 

  12. Zhu, X., Ohta, Y., Jordan, F., and Inouye, M. (1989) Nature 339, 483–484.

    Article  PubMed  CAS  Google Scholar 

  13. Baker, D., Sohl, J. L., and Agard, D. A. (1992) Nature 356, 263–265.

    Article  PubMed  CAS  Google Scholar 

  14. Franke, A. E., Danley, D. E., Kaczmarek, F. S., Hawrylik, S. J., Gerard, R. D., Lee, S. E., and Geoghegan, K. F. (1990) Biochim. Biophys. Acta 1037, 16–23.

    Article  PubMed  CAS  Google Scholar 

  15. Carrell, R. W., Evans, D. L., and Stein, P. E. (1992) Nature 353, 576–578.

    Article  Google Scholar 

  16. Tanford, C. (1968) Advan. Prot. Chem. 23, 121–282.

    Article  CAS  Google Scholar 

  17. Baldwin, R. L. (1975) Annu. Rev. Biochem. 44, 453–475.

    Article  PubMed  CAS  Google Scholar 

  18. Kim, P. S. and Baldwin, R. L. (1982) Annu. Rev. Biochem. 51, 459–489.

    Article  PubMed  CAS  Google Scholar 

  19. Kim, P. S., and Baldwin, R. L. (1990) Annu. Rev. Biochem. 59, 631–660.

    Article  PubMed  CAS  Google Scholar 

  20. Hirs, C. H. W. and Timasheff, S. N., eds. (1986) Methods in Enzymology, vol. 131 Enzyme Structure, Academic, Orlando, FL.

    Google Scholar 

  21. Jaenicke, R. and Rudolph, R. (1989) in Protein Structure. A Practical Approach (Creighton, T. E., ed.), IRL, Oxford, pp. 191–224.

    Google Scholar 

  22. Szabo, Z. G. (1969) in Comprehensive Chemical Kinetics (Bamford, C. H. and Tipper, C. F. H., eds.), Elsevier, Amsterdam, pp. 1–80.

    Google Scholar 

  23. Kiefhaber, T., Kohler, H. H., and Schmid, F. X. (1992)7. Mol. Biol. 224, 217–229.

    Article  CAS  Google Scholar 

  24. Ikai, A. and Tanford, C. (1973) J. Mol. Biol. 73, 145–163.

    Article  PubMed  CAS  Google Scholar 

  25. Utijama, H. and Baldwin, R. L. (1986) Methods Enzymol. 131, 51–70.

    Article  Google Scholar 

  26. Moore, J. W. and Pearson, R. G. (1981) Kinetics and Mechanism (3rd ed.), Wiley,YNew York.

    Google Scholar 

  27. Cook, K. H., Schmid, F. X., and Baldwin, R. L. (1979) Proc. Natl. Acad. Sei. USA 76, 6157–6161.

    Article  CAS  Google Scholar 

  28. Schmid, F. X. (1986) FEBSLett. 198, 217–220.

    Article  CAS  Google Scholar 

  29. Kiefhaber, T., Grunert, H. P., Hahn, U., and Schmid, F. X. (1992) Prot. Struct. Funct. Genet. 12, 171–179.

    Article  CAS  Google Scholar 

  30. Schmid, F. X. (1989) in Protein Structure. A Practical Approach (Creighton, T. E., ed.), IRL, Oxford, pp. 251–286.

    Google Scholar 

  31. Hagerman, P. J. and Baldwin, R. L. (1976) Biochemistry 15, 1462–1473.

    Article  PubMed  CAS  Google Scholar 

  32. Fischer, G., Bang, H., and Mech, C. (1984) Biomed. Biochim. Acta 43, 1101–1111.

    PubMed  CAS  Google Scholar 

  33. Lang, K., Schmid, F. X., and Fischer, G. (1987) Nature 329, 268–270.

    Article  PubMed  CAS  Google Scholar 

  34. Kiefhaber, T., Quaas, R., Hahn, U., and Schmid, F. X. (1990) Biochemistry 29, 3061–3070.

    Article  PubMed  CAS  Google Scholar 

  35. Schmid, F. X. (1986) Methods Enzymol. 131, 70–82.

    Article  PubMed  CAS  Google Scholar 

  36. Kiefhaber, T., Quaas, R., Hahn, U., and Schmid, F. X. (1990) Biochemistry 29, 3053–3061.

    Article  PubMed  CAS  Google Scholar 

  37. Heinemann, U. and Saenger, W. (1982) Nature 299, 27–31.

    Article  PubMed  CAS  Google Scholar 

  38. Chen, B.-L., Baase, W. A., Nicholson, H., and Schellman, J. A. (1992) Biochemistry 31, 1464–1476.

    Article  PubMed  CAS  Google Scholar 

  39. Matthews, C. R. (1987) Methods Enzymol. 154, 498–511.

    Article  PubMed  CAS  Google Scholar 

  40. Matouschek, A., Kellis, J. J., Serrano, L., Bycroft, M., and Fersht, A. R. (1990) Nature 346, 440–445.

    Article  PubMed  CAS  Google Scholar 

  41. Kuwajima, K., Mitani, M., and Sugai, S. (1989) J. Mol. Biol. 206, 547–561.

    Article  PubMed  CAS  Google Scholar 

  42. Kramer, H. A. (1940) Physica 4, 284–304.

    Article  Google Scholar 

  43. Kiefhaber, T. and Schmid, F. X. (1992) J. Mol. Biol. 224, 231–240.

    Article  PubMed  CAS  Google Scholar 

  44. Kiefhaber, T., Schmid, F. X., Willaert, K., Engelborghs, Y., and Chaffotte, A. (1992) Protein Sci. 1, 1162–1172.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Humana Press Inc.

About this protocol

Cite this protocol

Kiefhaber, T. (1995). Protein Folding Kinetics. In: Shirley, B.A. (eds) Protein Stability and Folding. Methods in Molecular Biology™, vol 40. Humana Press. https://doi.org/10.1385/0-89603-301-5:313

Download citation

  • DOI: https://doi.org/10.1385/0-89603-301-5:313

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-301-6

  • Online ISBN: 978-1-59259-527-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics