Skip to main content

Transcription System Using a HeLa Cell Mitochondrial Lysate

  • Protocol
In Vitro Transcription and Translation Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 37))

Abstract

The general features of the organization of in vivo transcription of the mammalian mitochondrial DNA (mtDNA) were delineated in the 1970s and early 1980s by a detailed analysis of the mapping and metabolic properties of the transcripts of the two strands of this DNA (1, 2), the elucidation of the RNA processing events (3), and the identification of the initiation sites for transcription (4, 5). A significant advance in our understanding of the mechanism and regulation of this process was made possible by the development in the past ten years of in vitro transcription systems. Although the “in organello” transcription system (6) has provided an approach for investigating the role of the extramitochondrial environment and the energetic requirements for transcription, the “open” systems have opened the way for the dissection of the enzymology and the detailed mechanistic aspects of this process. Two such systems have been established. One utilizes semipurified protein components to promote transcription from appropriate mtDNA templates (7), whereas the other makes use of a mitochondrial lysate programmed by exogenous templates (8) and supplemented, when necessary, with purified transcription termination factor (mTERF) (9). The rationale behind the latter approach is to reproduce as closely as possible the in vivo situation to support the various steps of the transcription process, under conditions amenable to external manipulation. In this chapter, we describe in detail the protocols used in our laboratory for the study of transcription initiation and termination in a mitochondrial lysate from HeLa cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ojala, D., Merkel, C., Gelfand, R., and Attardi, G. (1980) The tRNA gene punctuate the reading of genetic information in human mitochondrial DNA. Cell 22, 393–403.

    Article  PubMed  CAS  Google Scholar 

  2. Gelfand, R. and Attardi, G. (1981) Synthesis and turnover of mitochondrial ribonucleic acid in HeLa cells: the mature ribosomal and messenger ribonucleic acid species are metabolically unstable. Mol. Cell. Biol. 1, 497–511.

    PubMed  CAS  Google Scholar 

  3. Ojala, D., Montoya, J., and Attardi, G. (1982) The tRNA punctuation model of RNA processing in human mitochondria. Nature 290, 470–474.

    Article  Google Scholar 

  4. Montoya, J., Christianson, T., Levens, D., Rabinowitz, M., and Attardi, G. (1982) Identification of initiation sites for heavy-strand and light-strand transcription in human mitochondrial DNA. Proc. Natl. Acad. Sci. USA 79, 7195–7199.

    Article  PubMed  CAS  Google Scholar 

  5. Yoza, B. K. and Bogenhagen, D. F. (1984) Identification and in vitro capping of a primary transcript of human mitochondrial DNA. J. Biol. Chem. 259, 3909–3915.

    PubMed  CAS  Google Scholar 

  6. Gaines, G. and Attardi, G. (1984) Highly efficient RNA-synthesizing system that uses isolated human mitochondria: new initiation events and in viva-like processing patterns. Mol. Cell. Biol. 4, 1605–1617.

    PubMed  CAS  Google Scholar 

  7. Walberg, M. W. and Clayton, D. A. (1983) In vitro transcription of human mitochondrial DNA. J. Biol. Chem. 258, 1268–1275.

    PubMed  CAS  Google Scholar 

  8. Shuey, D. J. and Attardi, G. (1985) Characterization of an RNA polymerase activity from HeLa cell nntochondria, which initiates transcription at the heavy strand rRNA promoter in human mitochondrial DNA. J. Biol. Chem. 260, 1952–1958.

    PubMed  CAS  Google Scholar 

  9. Kruse, B., Narasimhan, N., and Attardi, G. (1989) Termination of transcription in human mitochondria: identification and purification of a DNA binding protein factor that promotes termination. Cell 58, 391–397.

    Article  PubMed  CAS  Google Scholar 

  10. Puck, T. T., and Fisher, H. W. (1956) Genetics of somatic mammalian cells. I. Demonstration of the existence of mutants with different growth requirements in a human cancer cell strain (HeLa) J. Exp. Med. 104, 427–434

    Article  PubMed  CAS  Google Scholar 

  11. Levintov, L. and Darnell, J. E. (1960) A simplified procedure for purification of large amounts of poliovirus: characterization and amino acid analysis of type 1 poliovirus. J. Biol. Chem. 235, 70–73.

    Google Scholar 

  12. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning, A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  13. Bradford, M. M. (1976) A rapid and sensitive method of the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  14. Narasimhan, N. and Attardi, G. (1987) Specific requirements for ATP at an early step of in vitro transcription of human mitochondrial DNA. Proc. Natl. Acad. Sci. USA 84, 4078–4082.

    Article  PubMed  CAS  Google Scholar 

  15. Martin, S. A., Paoletti, E., and Moss, B. (1975) Purification of the mRNA guanylyltransferase and mRNA (guanine-7-)methyltransferase from vaccinia virions. J. Biol. Chem. 250, 9322–9329.

    PubMed  CAS  Google Scholar 

  16. Gaines, G. and King, M. P. unpublished data.

    Google Scholar 

  17. Anderson, S., Bankier, A. T., Barrell, B. G., deBruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. E., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Stadler, R., and Young, I. G. (1981) Sequence and organization of the human mitochondrial genome. Nature (Lond.) 290, 457–465.

    Article  CAS  Google Scholar 

  18. King, M. P. (1987) PhD. Thesis, California Institute of Technology, Pasadena, CA.

    Google Scholar 

  19. Attardi, G., Cantatore, P., Chomyn, A., Crews, S., Gelfand, R., Merkel, C., Montoya, J., and Ojala, D. (1982) A comprehensive view of mitochondrial gene expression in human cells, in Mitochondrial Genes (Slonimski, P., Borst, P., and Attardi, G., eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 51–71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Humana Press Inc.

About this protocol

Cite this protocol

Kruse, B., Murdter, N.N., Attardi, G. (1995). Transcription System Using a HeLa Cell Mitochondrial Lysate. In: Tymms, M.J. (eds) In Vitro Transcription and Translation Protocols. Methods in Molecular Biology, vol 37. Humana Press. https://doi.org/10.1385/0-89603-288-4:179

Download citation

  • DOI: https://doi.org/10.1385/0-89603-288-4:179

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-288-0

  • Online ISBN: 978-1-59259-524-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics