Skip to main content

The Crystallization and Structure Analysis of Oligonucleotide Sequences

  • Protocol
Crystallographic Methods and Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 56))

  • 1699 Accesses

Abstract

Until 1976, the study of nucleic acid structure was exclusively the domain of fiber diffractionists. Between the original Watson-Crick structure in 1953 and this date, there was considerable activity in refining the original B-form model of DNA and extending the approach to other polymorphs and a number of synthetic, repetitious polynucleotides, all of which were based on data from fiber-diffraction samples. These studies reached their zenith with the development and use of a “linked-atom,” least-squares refinement procedure for the optimization of mono-or dinucleotide repeat units against the relatively sparse para-crystalline diffraction data from ordered fibers. It is a tribute to the sophistication of these analyses, in spite of the inherent limitations of fiber data, that the refined “canonical” A- and B-DNA double helices are still major reference pomts for many studies (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neidle, S (1994) DNA Structure and Recognition Oxford University Press, Oxford, UK

    Google Scholar 

  2. Seeman, N C, Rosenberg, J. M., Suddath, F. L., Kim, J J. P, and Rich, A (1976) RNA double-helical fragments at atomic resolution: I The crystal and molecular structure of sodium adenylyl-3′,5′-uridine hexahydrate. J Mol Biol 104, 109–144.

    Article  CAS  Google Scholar 

  3. Rosenberg, J. M., Seeman, N C, Day, R O, and Rich, A. (1976) RNA double-helical fragment at atomic resolution: II. The crystal structure of sodium guanylyl-3,5′-cytidine nonahydrate. J Mol Biol 104, 145–167

    Article  CAS  Google Scholar 

  4. Wang, A H.-J, Quigley, G. J., Kolpak, F, Crawford, J L, van Boom, J. H, van der Marel, G, and Rich, A (1979) Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature 282, 680–686

    Article  CAS  Google Scholar 

  5. Gessner, R V, Frederick, G A, Quigley, G J, Rich, A, and Wang, A H-J, (1989) The molecular structure of the left-handed Z-DNA double helix at 10-Å atomic resolution. J Biol Chem 264, 7921–7935

    CAS  Google Scholar 

  6. Shakked, Z (1991) The influence of the environment on DNA structures determined by X-ray crystallography. Curr Opinion Structural Biol 1, 446–451

    Article  CAS  Google Scholar 

  7. Dickerson, R E (1991) DNA structure from A to Z. Methods Enzymol 211, 67–111

    Article  Google Scholar 

  8. Yanagi, K, Prové, G G, and Dickerson, R E (1991) Analysis of local helix geometry in three B-DN A decamers and eight dodecamers. J Mol Biol 217, 201–214

    Article  CAS  Google Scholar 

  9. Dickerson, R E, Goodsell, D S, and Neidle, S. (1994) “ the tyranny of the lattice” Proc Natl Acad Sci USA 91, 3579–3583

    Article  CAS  Google Scholar 

  10. Calladine, C R (1982) Mechanics of sequence-dependent stacking of bases in B-DNA. J Mol Biol 161, 343–352

    Article  CAS  Google Scholar 

  11. Kennard, O and Hunter, W N (1989) Oligonucleotide structure A decade of results from single-crystal X-ray diffraction studies. Quart Rev Biophys 22, 327–379

    Article  CAS  Google Scholar 

  12. Gait, M J (ed) (1984) Oligonucleotide synthesis IRL Press, Oxford

    Google Scholar 

  13. Caruthers, M H (1985) Gene synthesis. DNA chemistry and its uses. Science 230, 281–285

    Article  CAS  Google Scholar 

  14. Reese, C B. (1989) The chemical synthesis of oligo-and poly-ribonucleotides. in Nucleic Acids and Molecular Biology, vol 3 (Eckstem, F and Lilley, D M J, eds). Springer-Verlag, Berlin.

    Google Scholar 

  15. Gerwith, D T and Moore, P B (1988) Exploration of the L18 binding site on 5S RNA by deletion mutagenesis. Nucleic Acids Res 16, 10,717–10,732

    Article  Google Scholar 

  16. Szewczak, A A, White, S A, Gerwith, D T, and Moore, P B (1990) On the use of T7 RNA polymerase transcripts for physical investigation. Nucleic Acids Res 18, 4139–4142

    Article  CAS  Google Scholar 

  17. Ducruix, A and Giegé, R (eds) (1992) Crystallization of Nucleic Acids and Proteins A Practical Approach IRL Press at Oxford University Press, Oxford, UK

    Google Scholar 

  18. Wang, A H-J, Fujii, S, van Boom, J H., and Rich, A. (1982) Molecular structure of the octamer d(G-G-C-C-G-G-C-C) modified A-DNA. Proc Natl Acad Sci USA 79, 3968–3972

    Article  CAS  Google Scholar 

  19. McCall, M, Brown, T, Hunter, W. N, and Kennard, O. (1986) The crystal structure of d(GGATGGGAG) forms an essential part of the binding site for transcription factor IIIA. Nature 322, 661–664

    Article  CAS  Google Scholar 

  20. Kennard, O, Cruse, W B T, Nachman, J, Prange, T, Shakked, Z, and Rabinovich, D (1986) Ordered water structure in an A-DNA octamer at 17 Å resolution. J Biomol Struct Dyn 3, 623–647

    CAS  Google Scholar 

  21. Takusagawa, F (1990) The crystal structure of d(GTACGTAC) at 2 25 Å resolution Are the A-DNA’s always unwound approximately 10° at the C-G steps?. J Biomol Struct Dyn 7, 795–809

    CAS  Google Scholar 

  22. Hunter, W N, D’Estaintot, B L, and Kennard, O. (1989) Structural variation in d(CTCTAGAG) Implications for protein-DNA interactions. Biochemistry 28, 2444–2451

    Article  CAS  Google Scholar 

  23. Courseille, C, Dautant, A, Hospital, M., D’Estaintot, B L, Precigoux, G, Molko, D, and Teoule, R. (1990) Crystal structure analysis of an A(DNA) octamer d(GTACGTAC). Acta Crystallographica A46, FC9–FC12

    CAS  Google Scholar 

  24. Langlois d’Estaintot, B., Dautant, A., Courseille, C, and Precigoux, G (1993) Orthorhombic crystal structure of the A-DNA octamer d(GTACGTAC). Eur J Biochem 213, 673–682

    Article  Google Scholar 

  25. Shakked, Z, Guerstein-Guzikevich, G., Eisenstein, M., Frolow, G., and Rabinovich, D (1989) The conformation of the DNA double helix in the crystal 1s dependent on its environment. Nature 342, 456–460.

    Article  CAS  Google Scholar 

  26. Dock-Bregeon, A C, Chevrier, B., Podjarny, A, Moras, D, deBear, J S, Gough, G R, Gilham, P. T., and Johnson, J E. (1988) High resolution structure of the RNA duplex [U(U-A)6A]2. Nature 335, 375–378

    Article  CAS  Google Scholar 

  27. Wang, A H-J., Fujii, S, van Boom, J. H, van der Marel, G, van Boeckel, S A A, and Rich, A (1982) Molecular structure of r(GCG)d(TATACGC) a DNA-RNA hybrid helix Joined to double helical DNA. Nature 299, 601–604.

    Article  CAS  Google Scholar 

  28. Kopka, M L, Fratini, A V., Drew, H. R, and Dickerson, R E. (1983) Ordered water structure around a B-DNA dodecamer. A quantitative study. J Mol Biol 163, 129–146

    Article  CAS  Google Scholar 

  29. DiGabriele, A. D, Sanderson, M R, and Steitz, T (1989) Crystal lattice packing 1s important in determining the bend of a DNA dodecamer containing an adenine tract. Proc Natl Acad Sci USA 86, 1816–1820.

    Article  CAS  Google Scholar 

  30. Nelson, H C M, Finch, J T., Luisi, B. F, and Klug, A (1987) The structure of an oligo(dA) oligo(dT) tract and its biological implications. Nature 330, 221–226.

    Article  CAS  Google Scholar 

  31. Timsit, Y, Westhof, E., Fuchs, R P P, and Moras, D (1989) Unusual helical packing in crystals of DNA bearing a mutation hot spot. Nature 341, 459–462

    Article  CAS  Google Scholar 

  32. Heinemann, U and Alings, C. (1991) The conformation of a B-DNA decamer is mainly determined by its sequence and not by crystal environment. EMBO J 10, 35–43

    CAS  Google Scholar 

  33. Aymami, J, Coll, M., van der Marel, G, van Boom, J, Wang, A H J, and Rich, A. (1990) Molecular structure of nicked DNA A substrate for DNA repair enzymes. Proc Natl Acad Sci USA 87, 2526–2530.

    Article  CAS  Google Scholar 

  34. Narendra, N, Ginell, S L, Russu, I. M., and Berman, H. M (1991) Biochemistry 30, 4449–4455

    Article  Google Scholar 

  35. Yoon, C, Privé, C Y., Goodsell, D S., and Dickerson, R.E (1988) Structure of an alternating-B DNA helix and its relationship to A-tract DNA. Proc Natl Acad Sci USA 85, 6332–6336

    Article  CAS  Google Scholar 

  36. Gessner, R V, Quigley, G J, Wang, A. H.-J., van der Marel, G A, van Boom, J, and Rich, A (1985) Structural basis for stabilization of Z-DNA by cobalt hexaammine and magnesium cations. Biochemistry 24, 237–240

    Article  CAS  Google Scholar 

  37. Wang, A H-J., Gessner, R V, van der Marel, G A, van Boom, J H, and Rich, A (1985) Crystal structure of Z-DNA without an alternating purine-pyrimidine sequence. Proc Natl Acad Sci USA 82, 2611–3615

    Google Scholar 

  38. Fujii, S, Wang, A H-J, van der Marel, G., van Boom, J H, and Rich, A. (1982) Molecular structure of (m5dC-dG)3. the role of the methyl group on 5-methyl cytosine in stabilizing Z-DNA. Nucleic Acids Res 10, 7879–7892.

    Article  CAS  Google Scholar 

  39. Coll, M, Fita, I., Lloveras, J, Subirana, J A, Bardella, F, Huynh-Dinh, T., and Igolen, J (1988) Structure of d(CACGTG), a Z-DNA hexamer containing AT base pairs. Nucleic Acids Res 16, 8695–8705.

    Article  CAS  Google Scholar 

  40. Teng, M-K, Liaw, Y-C, van der Marel, G, van Boom, J H, and Wang, A H-J (1989) Effects of the 02′ hydroxyl group on Z-DNA conformation Structure of Z-RNA and (araC)-[Z-DNA]. Biochemistry 28, 4923–4928

    Article  CAS  Google Scholar 

  41. Zhou, G. and Ho, P. S (1990) Stabilization of Z-DNA by dernethylation of thymine bases 13 Å single-crystal structure of d(m5CGUAm5CG). Biochemistry 29, 7229–7236

    Article  CAS  Google Scholar 

  42. Van Meervelt, L, Moore, M H, Lin, P K. T, Brown, D M, and Kennard, O (1990) Molecular and crystal structure of d(CGCGmo4CG) N 4-methoxycytosine guanine basepairs in Z-DNA. J Mol Biol 216, 773–781

    Article  Google Scholar 

  43. Wang, A H-J, Hakoshima, T, van der Marel, G., van Boom, J. H, and Rich, A (1984) AT base pairs are less stable than GC base pairs in Z-DNA The crystal structure of d(m5CGTAm5CG). Cell 37, 321–331

    Article  CAS  Google Scholar 

  44. Miller, M, Wlodawer, A., Appella, E, and Sussman, J L. (1987) Crystallization of a DNA duplex 15-mer containing unpaired bases d(CGCGAAATTTACGCG). J Mol Biol 195, 967,968

    Article  CAS  Google Scholar 

  45. Ginell, S L, Kuzmich, S, Jones, R A, and Berman, H M (1990) Crystal and molecular structure of a DNA duplex containing the carcinogenic lesion O 6-methylguanine. Biochemistry 29, 10,461–10,465

    Article  CAS  Google Scholar 

  46. Webster, G D, Sanderson, M R, Skelly, J V, Neidle, S, Swann, P F, Li, B F, and Tickle, I. J (1990) Crystal structure and sequence-dependent conformation of the A G mispaired oligonucleotide d(CGCAAGCTGGCG). Proc Natl Acad Sci USA 87, 6693–6697

    Article  CAS  Google Scholar 

  47. Rabinovich, D, Haran, T, Eisenstein, M., and Shakked, Z (1988) Structures of the mismatched duplex d(GGGTGCCC) and one of its Watson-Crick analogues d(GGGCGCCC). J Mol Biol 200, 151–161

    Article  CAS  Google Scholar 

  48. Kopka, M. L., Yoon, C, Goodsell, D, Pjura, P., and Dickerson, R E (1985) Binding of an antitumour drug to DNA netropsin and C-G-C-G-A-A-T-T-BrC-G-C-G. J Mel Biol 183, 553–563

    Article  CAS  Google Scholar 

  49. Teng, M-K, Usman, N, Frederick, C. A, and Wang, A H-J (1988) The molecular structure of the complex of Hoechst 33258 and the DNA dodecamer d(CGCGAATTCGCG). Nucleic Acids Res. 16, 2671–2690

    Article  CAS  Google Scholar 

  50. Pjura, P. E, Grzeskowiak, K., and Dickerson, R E (1987) Binding of Hoechst 33258 to the minor groove of B-DNA. J Mol Biol 197, 257–271

    Article  CAS  Google Scholar 

  51. Carrondo, M A F de C T, Coll, M., Aymami, J, Wang, A H.-J, van der Marel, G, van Boom, J H., and Rich, A (1989) Binding of a Hoechst dye to d(CGCGATATCGCG) and its influence on the conformation of the DNA fragment. Biochemistry 28, 7849–7859

    Article  CAS  Google Scholar 

  52. Coll, M., Aymami, J, van der Marel, G., van Boom, J. H., Rich, A., and Wang, A H-J (1989) Molecular structure of the netropsin-d(CGCGATATCGCG) complex DNA conformation in an alternating AT segment. Biochemistry 28, 310–320

    Article  CAS  Google Scholar 

  53. Coll, M., Frederick, C. A., Wang, A. H-J., and Rich, A. (1987) A bifurcated hydrogen-bonded conformation in the d(A T) base pairs of the DNA dodecamer d(CGCAAATTTGCG) and its complex with distamycin. Proc Natl. Acad Sci USA 84, 8385–8389

    Article  CAS  Google Scholar 

  54. Brown, D G, Sanderson, M. R., Skelly, J. V., Jenkins, T. C., Brown, T, Garman, E, Stuart, D. I., and Neidle, S. (1990) Crystal structure of a berenil-dodecanucleotide complex: the role of water in sequence-specific ligand binding. EMBO J 9, 1329–1334.

    CAS  Google Scholar 

  55. Larsen, T. A., Goodsell, D. S., Cascio, D., Grzeskowiak, K., and Dickerson, R. E. (1989) The structure of DAPI bound to DNA. J. Biomol. Struct Dyn 7, 477–491

    CAS  Google Scholar 

  56. Quigley, G. J., Wang, A. H.-J., Ughetto, G., van der Marel, G., van Boom, J. H, and Rich, A (1980) Molecular structure of an anticancer drug-DNA complex. Daunomycin plus d(CpGpTpApCpG). Proc Natl Acad Sci USA 77, 7204–7208

    Article  CAS  Google Scholar 

  57. Wang, A. H.-J, Ughetto, G., Quigley, G J., and Rich, A. (1987) Interactions between an anthracycline antibiotic and DNA Molecular structure of daunomycin complexed to d(CpGpTpApCpG) at 12-Å resolution. Biochemistry 26, 1152–1163

    Article  CAS  Google Scholar 

  58. Moore, M. H., Hunter, W N., d’Estaintot, B. L., and Kennard, O. (1989) DNA-Drug interactions. The crystal structure of d(CGATCG) complexed with daunomycin. J Mol Biol 206, 693–705

    Article  CAS  Google Scholar 

  59. Gao, Q, Williams, L. D, Egli, M., Rabinovich, D, Chen, S.-L., Quigley, G J., and Rich, A (1991) Drug-induced DNA repair. X-ray structure of a DNA-ditercalinium complex. Proc. Nat1 Acad Sci. USA 88 2422–2426.

    Article  CAS  Google Scholar 

  60. Quigley, G J, Ughetto, G, van der Marel, G. A, van Boom, J. H, Wang, A. H.-J., and Rich, A. (1986) Non-Watson-Crick G.C and A.T base pairs in a DNA-antibiotic complex. Science 232, 1173–1304

    Article  Google Scholar 

  61. Wang, A. H.-J., Ughetto, G., Quigley, G J., Hakoshima, T., van der Marel, G A., van Boom, J. H., and Rich, A. (1984) The molecular structure of a DNA-triostin A complex. Science 225, 1115–1121

    Article  CAS  Google Scholar 

  62. Gao, Y-G, Liaw, Y.-C., Robinson, H., and Wang, A. H.-J. (1990) Binding of the antitumour drug nogalamycin and its derivatives to DNA Structural comparison. Biochemistry 29, 10,307–10,316.

    Article  CAS  Google Scholar 

  63. Takusagawa, F, Goldstein, B M, Youngster, S., Jones, R A, and Berman, H M (1984) Crystallization and preliminary X-ray study of a complex between d(ATGCAT) and actinomycin D. J Biol. Chem. 259, 4714,4715

    CAS  Google Scholar 

  64. Bancroft, D, Williams, L D., Rich, A., and Egli, M. (1994) The low-temperature crystal structure of the pure spermine form of Z-DNA reveals binding of a spermine molecule in the minor groove. Biochemistry 33, 1073–1086

    Article  CAS  Google Scholar 

  65. This technique was developed ca. 1972 by M. Spencer at King’s College London, and extended to oligonucleotide use by the present author

    Google Scholar 

  66. Dock-Bregeon, A. C., Chevrier, B., Podjarny, A., Johnson, J, de Bear, J S, Gough, G. R., Gilham, P. T., and Moras, D. (1989) Crystallographic structure of an RNA helix. [U(UA)6)A]2. J Mol Biol 209, 459–474

    Article  CAS  Google Scholar 

  67. Leonard, G. A. and Hunter, W. N. (1993) Crystal and molecular structure of d(CGTAGATCTACG) at 2.25Å resolution. J. Mol. Biol. 234, 198–208

    Article  CAS  Google Scholar 

  68. Bingman, C. A., Zon, G., and Sundaralingam, M (1992) Crystal and molecular structure of the A-DNA dodecamer d(CCGTACGTACGG). J. Mol. Biol 227, 738–756.

    Article  CAS  Google Scholar 

  69. Bingman, C, Jain, S, Zon, G, and Sundaralingam, M (1992) Crystal and molecular structure of the alterating dodecamer d(GCGTACGTACGC) in the A-DNA form comparison with the isomorphous non-alternating dodecamer d(CCGTACGTACGG). Nucleic Acids Res 20, 6637–6647

    Article  CAS  Google Scholar 

  70. Heinemann, D, Alings, C, and Bansal, M. (1992) Double helix conformation, groove dimensions and ligand binding potential of a G/C stretch in B-DNA. EMBO J 11, 1931–1939

    CAS  Google Scholar 

  71. Goodsell, D S, Grzeskowiak, K, and Dickerson, R E. (1995) Crystal structure of C-T-C-T-C-G-A-G-A-G Implications for the structure of the Holliday junction. Biochemistry 34, 1022–1029

    Article  CAS  Google Scholar 

  72. Goodsell, D. S, Grzeskowiak, M K, and Dickerson, R E (1994) The crystal structure of C-C-A-T-T-A-A-T-G-G Implications for bending of B-DNA at T-A steps. J Mol Biol 239, 79–96

    Article  CAS  Google Scholar 

  73. Goodsell, D S, Kopka, M L, Cascio, D, and Dickerson, R E (1993) Crystal structure of CATGGCCATG and Its implications for A-tract bending models. Proc Natl Acad Sci USA 90, 2930–2934

    Article  CAS  Google Scholar 

  74. Lipanov, A, Kopka, M L, Kacor-Grzeskowiak, M, Quintana, J, and Dickerson, R E (1993) Structure of the B-DNA decamer C-C-A-A-C-I-T-T-G-G in two different space groups conformational flexibility of B-DNA. Biochemistry 32, 1373–1389

    Article  CAS  Google Scholar 

  75. Rabinovich, D and Shakked, Z (1984) A new approach to structure determination of large molecules by multi-dimensional search methods. Acta Crystallographica A40, 195–200

    CAS  Google Scholar 

  76. Fitzgerald, P M D (1988) MERLOT, an integrated package of computer programs for the determination of crystal structures by molecular replacement. J Appl Crystallography 21, 273–278

    Article  CAS  Google Scholar 

  77. Chattopadhyaya, R and Chakrabarti, P (1988) Solving DNA structures by MERLOT. Acta Crystallographica B44, 651–657

    CAS  Google Scholar 

  78. Joshua-Tor, L., Rabinovich, D, Hope, H, Frolow, F, Appella, E., and Sussman, J. L (1988) The three-dimensional structure of a DNA duplex containing looped-out bases. Nature 334, 82–84.

    Article  CAS  Google Scholar 

  79. Joshua-Tor, L, Frolow, F, Appella, E., Hope, H, Rabinovich, D, and Sussman, J L (1992) Three-dimensional structures of bulge-containing DNA fragments. J Mel Biol 225, 397–431

    Article  CAS  Google Scholar 

  80. Miller, M, Harrison, R W., Wlodawer, A, Appella, E, and Sussman, J L (1988) Crystal structure of 15-mer DNA duplex containing unpaired bases. Nature 334, 85,86

    Article  CAS  Google Scholar 

  81. Harrison, R W (1989) Minimization of cross entropy. a tool for solving crystal structures. Acta Crystallographica A45, 4–10

    CAS  Google Scholar 

  82. Wing, R, Drew, H, Takano, T, Broka, C, Tanaka, S, Itakura, K., and Dickerson, R E (1980) Crystal structure analysts of a complete turn of B-DNA. Nature 287, 755–758.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Humana Press Inc.

About this protocol

Cite this protocol

Neidle, S. (1996). The Crystallization and Structure Analysis of Oligonucleotide Sequences. In: Jones, C., Mulloy, B., Sanderson, M.R. (eds) Crystallographic Methods and Protocols. Methods in Molecular Biology™, vol 56. Humana Press. https://doi.org/10.1385/0-89603-259-0:267

Download citation

  • DOI: https://doi.org/10.1385/0-89603-259-0:267

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-259-0

  • Online ISBN: 978-1-59259-543-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics