Skip to main content

Part of the book series: Methods in Molecular Biology ((MIMB,volume 17))

  • 1625 Accesses

Abstract

For more than 30 years, electron ionization mass spectrometry (EIMS) has played a key role in the structural determination of small biological compounds, largely because it has three advantages to offer: very high sensitivity compared to other structural methods, such as nuclear magnetic resonance and infrared spectrometry, the possibility for analysis of mixtures, and the wealth of data in the spectra that can provide information about structural details. However, the use of EIMS for the structure elucidation of larger biological molecules is limited by the necessity for vaporizing samples before ionization, a process that causes the thermal degradation of high-mol-wt and/or polar compounds. More recently, the development of “softer” methods of ionization that do not require vaporization prior to ionization has substantially overcome the problem of thermal decomposition, but these ionization methods impart little excess energy to the molecular ions and result in spectra that contain few, if any, fragment ions. In order to obtain detailed information about structure, therefore, the molecular ions must be decomposed and the mass spectra of the decomposition products recorded. For this type of analysis, a tandem mass spectrometer is employed. The resulting spectra include product (fragment) ions derived from a single precursor (parent) ion, provide structural details, such as amino acid or sugar sequence and residue modifications, and identify the components of conjugated lipids or other adducts. In the case of samples that are mixtures, the structures of each of the components can be specifically determined. A brief survey of tandem mass spectrometry as it is employed for the elucidation of several important compound types is presented here, using examples from the author’s research and collaborations. For a comprehensive review of current mass spectral approaches to the structure determination of biologically significant compounds, the reader is referred to a recent volume edited by J. A. McCloskey (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCloskey, J A (ed.) (1990) Methods in Enzymology, vol 193 Mass Spectrometry. Academic, San Diego, CA.

    Google Scholar 

  2. Hunt, D F, Buko, A M, Ballard, J. B, Shabanowitz, J, and Giordani, A B (1981) Sequence analysis of polypeptides by collision activated dissociation on a triple quadrupole mass spectrometer. Biomed Mass Spectrom 8, 397–408.

    Article  CAS  Google Scholar 

  3. Hunt, D F, Yates, J R III, Shabanowitz, J., Winston, S,and Hauer, C R (1986) Protein sequencing by tandem mass spectrometry Proc. Natl. Acad Sci USA 83, 6233–6237.

    Article  CAS  Google Scholar 

  4. Biemann, K and Scoble, H A. (1987) Characterization by tandem mass spectrometry of structural modifications in proteins. Science 237, 992–998.

    Article  CAS  Google Scholar 

  5. Huang, E C and Henion, J D (1990) LC/MS and LC/MS/MS determination of protein tryptic digests J Am Soc. Mass Spectrom. 1, 158–165.

    Article  CAS  Google Scholar 

  6. Smith, R. D., Loo, Joseph A, Barinaga, C. J, Edmonds, C. G., and Udseth, H R. (1990) Collisional activation and collision-activated dissociation of large multiply charged polypeptides and proteins produced by electrospray ionization. J Am Soc. Mass Spectrom 1, 53–65.

    Article  CAS  Google Scholar 

  7. Poulter, L and Taylor, L C. E (1989) A comparison of low and high energy collisionally activated decomposition MS-MS for peptide sequencing lnt. J. Mass Spectrom Ion Proc. 91, 183–197.

    Article  CAS  Google Scholar 

  8. Alexander, A J, Thibault, P, Boyd, R K, Curtis, J M., and Rinehart, K. L (1990) Collision induced dissociation of peptide ions Part 3. Comparison of results obtained using sector-quadrupole hybrids with those from tandem double-focusing instruments Int J Mass Spectrom. Ion Proc 98, 107–134.

    Article  CAS  Google Scholar 

  9. Sato, K, Asada, T, Ishihara, M, Kunihiro, F., Kammei, Y., Kubota, E., Costello, C. E, Martin, S A, Scoble, H A, and Biemann, K. (1987) High-performance tandem mass spectrometry Calibration and performance of linked scans of a four-sector instrument Anal. Chem 59, 1652–1659.

    Article  CAS  Google Scholar 

  10. Johnson, R S and Biemann, K. (1989) Computer program (SEQPEP) to aid in the interpretation of high-energy collision tandem mass spectra of peptides Biomed Env. Mass Spectrom 18, 945–957.

    Article  CAS  Google Scholar 

  11. Roepstorff, P. and Fohlman, J. (1984) Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed. Mass Spectrom. 11, 601.

    Article  CAS  Google Scholar 

  12. Martin, S A, Johnson, R. S, Costello, C. E, and Biemann, K (1988) The structure determination of peptides by tandem mass spectrometry, in Analysis of Peptides and Proteins (McNeal, C J, ed), Wiley, Chichester, UK, pp 135–150.

    Google Scholar 

  13. Johnson, R S, Martin, S A, and Biemann, K. (1988) Collision-induced fragmentation of (M+H)+ ions of peptides. Side chain specific sequence ions. Int. J. Mass Spectrom. Ion Proc. 86,137–154.

    Article  CAS  Google Scholar 

  14. Papayannopoulos, I. A and Biemann, K. (1991) A computer program (COMPOST) for predicting mass spectrometry information from known amino acid sequences.J. Am Soc Mass Spectrom. 2, 174–177.

    Article  CAS  Google Scholar 

  15. Lee, T D and Vemuri, S. (1990) MacProMass. a computer program to correlate mass spectral data to peptide and protein structures. Biomed. Env Mass Spectrom. 19, 639–645.

    Article  CAS  Google Scholar 

  16. Matsuo, T (1989) High performance sector mass spectrometers past and present Mass Spectrom Rev. 8, 203–236.

    Article  CAS  Google Scholar 

  17. Wada, Y, Matsuo, T., and Sakurai, T. (1989) Structure elucidation of hemoglobin variants and other proteins by digit-printing method. Mass Spectrom Rev. 8, 379–434.

    Article  CAS  Google Scholar 

  18. Vath, J. E., Zollinger, M, and Biemann, K. (1988) A method for the derivatization of organic compounds at the sub-nanomole level with reagent vapor Fres Z Anal.Chem 331, 248–252.

    Article  CAS  Google Scholar 

  19. Vath, J E and Biemann, K. (1990) Microderivatization of peptides placing a fixed positive charge at the N-terminus to modify high energy collision fragmentation. Int. J Mass Spectrom Ion Proc 100, 287–299.

    Article  CAS  Google Scholar 

  20. Egge, H. and Peter-Katalinic, J (1987) Fast atom bombardment mass spectrometry for structural elucidation of glycoconugates Mass Spectrom. Rev 6, 331–393.

    Article  CAS  Google Scholar 

  21. Dell, A. (1987) F.A.B.-Mass spectrometry of carbohydrates. Adv Carbohydr. Chem Biochem 45, 19–72.

    Article  CAS  Google Scholar 

  22. Carpani, G, Orsini, F., Sisti, M, and Verolta, L (1989) Saponins from Albizza antihelmintica Phytochemistry 28, 863–866.

    Article  CAS  Google Scholar 

  23. Gibson, B W., Webb, J W, Yamasaki, R, Fisher, S. J., Burlingame, A L, Mandrell, R. E, Schneider, H, and Griffiss, J. H. (1989) Structure and heterogeneity of the oligosaccharides from the lipopolysaccharides of a pyocin-resistant Neisseria gonorrhoeae. Proc. Natl Acad Sci USA 86, 17–21.

    Article  CAS  Google Scholar 

  24. Hernandez, L M., Ballou, L., Alvarado, E, Gillece-Castro, B L, Burlingame, A L., and Ballou, C. E. (1989) A new Saccharomyces cerevisiae mnn mutant N-linked oligosaccharide structure J. Biol Chem 264,11,849–11,856.

    CAS  Google Scholar 

  25. Poulter, L. and Burlingame, A L (1990) Desorption mass spectrometry of oligosaccharides coupled with hydrophobic chromophores, in Methods in Enzymology, vol 193 Mass Spectrometry (McCloskey, J A, ed.), Academic, San Diego, CAA, pp. 661–689.

    Google Scholar 

  26. Richter, W. J, Muller, and Domon, B (1990) Tandem mass spectrometry in structural characterization of oligosaccharide residues in glycoconugates, in Methods in Enzymology, vol. 193. Mass Spectrometry (McCloskey, J A., ed), Academic, San Diego, CA, pp. 607–623.

    Google Scholar 

  27. Guevremont, R. and Wright, J. L. C (1987) FAB and sequential mass spectrometry with a VG ZAB-EQ: hexose stereoisomers Rapid Commun Mass Spectrom. 1, 12–13.

    Article  CAS  Google Scholar 

  28. Puzo, G., Fournie, J.-J., and Prome, J.-C (1985) Identification of stereoisomers of some hexoses by mass spectrometry using fast atom bombardment and mass ion kinetic energy. Anal. Chem. 57, 892–894.

    Article  CAS  Google Scholar 

  29. Gage, D A., Rathke, E, Costello, C E., and Jones, M. Z. (1992) Determination of sequence and linkage of tissue oligosaccharides in caprine β-mannosidosis by FAB-CAD-MS/MS Glycoconjugate J. 9.

    Google Scholar 

  30. Orlando, R, Bush, C. A, and Fenselau, C (1990) Structural analysis of oligosaccharides by tandem mass spectrometry: collisional activation of sodium adduct ions Biomed. Environ Mass Spectrom 19, 747–754.

    Article  CAS  Google Scholar 

  31. Laine, R. A, Pamidimukkala, K. M., French, A. D, Hall, R W., Abbas, S. A., Jain, R K, and Matta, K. L (1988) Linkage position in oligosaccharides by fast atom bombardment ionization, collision-activated dissociation, tandem mass spectrometry and molecular modeling. J. Am. Chem Soc. 110, 6931–6939.

    Article  CAS  Google Scholar 

  32. Garozzo, D, Giuffrida, M, Impallomeni, G, Ballistreri, A, and Montaudo, G (1990) Determination of linkage position and identification of the reducing end in linear oligosaccharides by negative ion fast atom bombardment mass spectrometry Anal. Chem. 62, 279–286.

    Article  CAS  Google Scholar 

  33. Angel, A-S., Lindh, F, and Nilsson, B. (1987) Determination of binding positions in oligosaccharides and glycosphingolipids by fast-atom-bombardment mass spectrometry. Carbohydr. Res. 168, 15–31.

    Article  CAS  Google Scholar 

  34. Breimer, M L., Hansson, G C, Karlsson, K.-A, Leffler, H., Pimlott, W, and Samuelsson, B E (1979) Selected ion monitoring of glycosphingolipid mixtures Identification of several blood group type glycolipids in the small intestine of an individual rabbit. Biomed Mass Spectrom 6, 231–241.

    Article  CAS  Google Scholar 

  35. Kanfer, J N. and Hakomori, S (1983) Handbook of Lipid Research, vol 3 Sphingolipid Biochemistry, Plenum, New York.

    Google Scholar 

  36. Ladisch, S., Sweeley, C C, Becker, H, and Gage, D. (1989) Aberrant fatty acyl α-hydroxylation in human neuroblastoma tumor gangliosides. J. Biol. Chem 264, 12,097–12,105.

    CAS  Google Scholar 

  37. Costello, C.E and Vath, J E. (1990) Tandem mass spectrometry of glycolipids, in Methods in Enzymology, vol. 193. Mass Spectrometry (McCloskey, J A., ed), Academic, San Diego, CA, pp 738–768.

    Google Scholar 

  38. Domon, B. and Costello, C E. (1988) Structure elucidation of glycosphingoliptds and gangliosides using high performance tandem mass spectrometry. Biochemistry 27,1534–1543.

    Article  CAS  Google Scholar 

  39. Domon, B. and Costello, C. E (1988) A systematic nomenclature for carbohydrate fragmentations in FABMS/MS of glycoconjugates Glycoconjugate J 5, 397–409.

    Article  CAS  Google Scholar 

  40. Ohashi, Y., Iwamori, M, Ogawa, T., and Nagai, Y. (1987) Analysis of longchain bases in sphingolipids by positive ion fast atom bombardment or matrixassisted secondary ion mass spectrometry Biochemistry 26, 3990–3995.

    Article  CAS  Google Scholar 

  41. Kuet, J, Her, G R., and Reinhold, V. N (1989) Supercritical fluid chromatography of glycosphingolipids Anal Biochem 172, 228–234.

    Google Scholar 

  42. Domon, B, Vath, J E, and Costello, C E (1990) Analysis of derivatized ceramides and cerebrosides by high performance tandem mass spectrometry Anal Biochem 184, 151–164.

    Article  CAS  Google Scholar 

  43. Carr, S. A, Roberts, G D, Jurewicz, A., and Frederick, B (1988) Structural fingerprinting of Asn-linked carbohydrates from specific attachment sites in glycoproteins by mass spectrometry application to tissue plasminogen activator Biochemie 70, 1445–1454.

    Article  CAS  Google Scholar 

  44. Gillece-Castro, B L, Fisher, S J, Tarentino, A L, Peterson, D. L, and Burlingame, A L (1987) Structure of the oligosaccharide portion of human hepatitis B surface antigen. Arch Biochem Biophys 256,194–201.

    Article  CAS  Google Scholar 

  45. Vath, J E., Jankowski, M. A., Martin, S A, and Scoble, H A (1990) Characterization of recombinant glycoproteins by mass spectrometry Abstr 38th ASMS Conference on Mass Spectrometry and Allied Topics, Tucson, AZ, pp. 351,352.

    Google Scholar 

  46. Kayganich, K. and Murphy, R. C. (1991) Molecular species analysis of arachidonate containing glycerophosphocholines by tandem mass spectrometry J. Am Soc Mass Spectrom 2, 45–54.

    Article  CAS  Google Scholar 

  47. Huang, Z.-H, Gage, D A, and Sweeley, C C (1992) Characterization of diacylglycerylphosphocholine molecular species by FAB-CAD-MS/MS a general method not sensitive to the nature of the fatty acyl groups 3, 71–78.

    CAS  Google Scholar 

  48. Crain, P F. (1990) Mass spectrometric techniques in nucleic acid research Mass Spectrom Rev. 9, 505–554.

    Article  CAS  Google Scholar 

  49. Cerny, R L., Gross, M L, and Grotjahn, L (1986) Fast atom bombardment combined with tandem mass spectrometry for the study of dinucleotides. Anal Biochem 156, 424–435.

    Article  CAS  Google Scholar 

  50. Crow, F. W, Tomer, K B., Gross, M L, McCloskey, J A, and Bergstrom, D F (1984) Fast atom bombardment combined with tandem mass spectrometry for the determination of nucleosides Anal Biochem. 139, 243–262.

    Article  CAS  Google Scholar 

  51. Grotjahn, L, Blocker, H, and Frank, R (1985) Mass spectroscopic sequence analysis of oligonucleotides Biomed. Mass Spectrom 12, 514–524.

    Article  CAS  Google Scholar 

  52. Cushnir, J. R, Naylor, S., Lamb, J H, and Farmer, P B. (1990) Deuterium exchange studies in the identification of alkylated DNA bases found in urine, by tandem mass spectrometry Rapid. Commun Mass Spectrom 4, 426–431.

    Article  CAS  Google Scholar 

  53. Dino, John J., Jr, Guenat, C. R., Tomer, K B., and Kaufman, D G (1987) Analyses of carcinogen-modified oligonucleotides by fast atom bombardment/ tandem mass spectrometry Rapid Commun Mass Spectrom 1, 69–71.

    Article  CAS  Google Scholar 

  54. Claereboudt, J., Esmans, E L., Van den Eeckhout, E. G, and Claeys, M (1990) Constant neutral loss scanning for the characterization and sensitive analysis of deoxynucleosides and derivatives desorbed by fast atom bombardment Abstr 8th International Symposium on Mass Spectrometry in Life Sciences, Ghent, Belgium, p, 43.

    Google Scholar 

  55. Claereboudt, J, De Splegeleer, Lippert, B, De Bruin, E A, and Claeys, M (1989) Fast atom bombardment and tandem mass spectrometry for the structural characterization of cisplatin analogs and bis-nucleobase adducts with cisplatin Spectros Int. J. 7, 91–112.

    CAS  Google Scholar 

  56. Plazrak, A. S, Costello, C. E., Comess, K. M, Bancroft, D. P, and Lippard, S J (1990) High performance tandem mass spectrometry of platinated oligonucleotide fragments Abstr 38th ASMS Conference on Mass Spectrometry and Allied Topics, Tucson, AZ, pp 792–793.

    Google Scholar 

  57. Comess, K M., Costello, C E., and Lippard, S.J. (1990) Identification and characterizationa novel linkage isomerization in the reaction of trans-diamminedichloroplatmum(II) with 5′-d(TCTACGCGTTCT). Biochemistry 29, 2102–2110.

    Article  CAS  Google Scholar 

  58. Miller, J M. (1990) Fast atom bombardment mass spectrometry (FAB MS) of organometallic, coordination and related compounds Mass Spectrom Rev 9, 319–348.

    Article  CAS  Google Scholar 

  59. Schulten, H R. (1979) Biochemical, medical and environmental applications of field-ionization and field-desorption mass spectrometry. Int. J. Mass Spectrom Ion Phys 32, 97–283.

    Article  CAS  Google Scholar 

  60. Unger, S E, McCormick, T. J, Treher, E N., and Nunn, A. D. (1987) Comparison of desorption ionization methods for the analysis of neutral seven-coordinate technetium radiopharmaceuticals Anal Chem. 59, 1145–1149.

    Article  CAS  Google Scholar 

  61. Fackler, J. P., Jr., McNeal, C J., Pignolet, L H., and Winpenny, R E. P. (1989) 252Cf-Plasma desorption mass spectrometry as a tool for studying very large clusters; evidence for vertex-sharing icosahedra as components of Au67 (PPh3) 14C18 J.Am Chem Soc. 41, 111–114.

    Google Scholar 

  62. Wasfi, S H., Costello, C E, Rheingold, A. L, and Haggerty, B S (1991) The preparation and characterization of two new isomorphous heteropoly oxofluorotungstate [CoW17O56F6NaH4]9- and [FeW17O56F6NaH4]8- anions Inorg Chem 30, 1788–1792.

    Article  CAS  Google Scholar 

  63. Bott, G, Ogden, S, and Leary, J. A (1990) Collision-energy ramp. A modification to an RF-only quadrupole collision cell Rapid Commun Mass Spectrom 4, 341–344.

    Article  CAS  Google Scholar 

  64. Pearlstein, R M., Lock, C J. L, Faggiani, R., Costello, C. E., Zeng, C-H., Jones, A G., and Davison, A. (1988) Synthesis and characterization of technetium(V) complexes with amine, alcoholate and chloride ligands Inorg Chem 27, 2409–2413

    Article  CAS  Google Scholar 

  65. Nicolini, M, Bandoli, G, and Mazzi, U (1990) Technetium and Rhenium in Chemistry and Nuclear Medicine 3, Cortina International, Verona, and Raven, New York.

    Google Scholar 

  66. Hillenkamp, F, Karas, M, Bean, R C, and Chait, B T. (1991) Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal Chem 63, 1193A–1203A.

    Article  CAS  Google Scholar 

  67. Fenn, J. B, Mann, M, Meng, C K, and Wong, S F (1990) Electrospray ionization-principles and practice Mass Sectrom Rev 9, 37–70

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Humana Press Inc

About this protocol

Cite this protocol

Costello, C.E. (1993). Tandem Mass Spectrometry. In: Jones, C., Mulloy, B., Thomas, A.H. (eds) Spectroscopic Methods and Analyses. Methods in Molecular Biology, vol 17. Humana Press. https://doi.org/10.1385/0-89603-215-9:285

Download citation

  • DOI: https://doi.org/10.1385/0-89603-215-9:285

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-215-6

  • Online ISBN: 978-1-59259-504-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics