Skip to main content
Log in

Physiological aspects involved in production of xylanolytic enzymes by deep-sea hyperthermophilic archaeon Pyrodictium abyssi

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Xylanases (EC3.2.1.8) catalyze the hydrolysis of xylan, the major constituent of hemicellulose. The use of these enzymes could greatly improve the overall economics of processing lignocellulosic materials for the generation of liquid fuels and chemicals. The hyperthermophilic archaeon Pyrodictium abyssi, which was originally isolated from marine hot abyssal sites, grows optimally at 97°C and is a prospective source of highly thermostable xylanase. Its endoxylanase was shown to be highly thermostable (over 100 m in at 105°C) and active even at 110°C. The growth of the deep-sea archaeon P. abyssi was investigated using different culture techniques. Among the carbohydrates used, beech wood xylan, birch wood glucuronoxylan and the arabinoxylan from oats pelt appeared to be good inducers for endoxylanase and β-xylosidase production. The highest production of arabinofuranosidase, however, was detected in the cell extracts after growth on xylose and pyruvate, indicating that the intermediate of the tricarboxylic acid cycle acted as a nonrepressing carbon source for the production of thi enzyme. Electron microscopic studies did not show a significant difference in the cell surface (e.g., xylanosomes) when P. abyssi cells were grown on different carbohydrates. The main kinetic parameters of the organism have been determined. The cell yield was shown to be very low owing to incomplete substrate utilization, but a very high maximal specific growth rate was determined (μmax=0.0195) at 90°C and pH 6.0. We also give information on the problems that arise during the fermentation of this hyperthermophilic archaeon at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B :

Contois apparent saturation constant

diag(M):

vector extracted from main diagonal of generic matrix M

J :

Jacobian matrix of estimated parameters

K g :

Monod saturation constant

K g :

tessier apparent saturation constant

n :

number of responses

p :

number of parameters

S :

substrate concentration

S R 2 :

estimate of error variance

t :

time

t γ,1−α/2 :

t-Student abscissa for v degrees of freedom at the significance level α/2

X :

cell mass concentration

y :

experimental response variable (cell mass or substrate concentration)

y :

estimated response variable

y :

estimated responses vector

Y X/S :

cell mass yield factor

\(\hat \beta \) :

estimated parameters vector

η:

correct responses vector

μmax :

maximum specific uptake rate

σ 2ε :

error variance

References

  1. Pley, U., Schipka, J., Gambacorta, A., Jannasch, H., Fricke, H., Rachel, R., and Stetter, K. O. (1991), System. Appl. Microbiol. 14, 245–253.

    Google Scholar 

  2. Antranikian, G. and Sjøholm, C. (1997), US Patent no. 05688668.

  3. Antranikian, G. and Sjøholm, C. (1999), US Patent no. 05912150.

  4. Andrade, C. M. M. C., Pereira, N. Jr., and Antranikian, G. (1999), Rev. Microbiol. 30, 325–336.

    Article  Google Scholar 

  5. Stetter, K. O. (1996), FEMS Microbiol. Rev. 18, 149–158.

    Article  CAS  Google Scholar 

  6. Halio, S. B., Blumentals, I. I., Short, S. A., Merrill, B. M., and Kelly, R. M. (1996), J. Bacteriol., 178(9), 2605–2612.

    CAS  Google Scholar 

  7. Kengen, S. W. M., Stams, A. J. M., and de Vos, W. M. (1996), FEMS Microbiol. Rev. 18, 119–137.

    Article  CAS  Google Scholar 

  8. Krahe, M., Antranikian, G., and Märkl, H. (1996), FEMS Microbiol. Rev. 18, 271–285.

    Article  CAS  Google Scholar 

  9. Stetter, K. O., König, H., and Stackebrandt, E. (1983), System. Appl. Microbiol. 4, 535–551.

    CAS  Google Scholar 

  10. Somogyi, M. (1952), J. Biol. Chem. 195, 19–23.

    CAS  Google Scholar 

  11. Miller, G. L. (1969), Anal. Chem. 31, 426–428.

    Article  Google Scholar 

  12. Bradford, M. (1976), Anal. Biochem. 72, 248–254.

    Article  CAS  Google Scholar 

  13. Canganella, F., Andrade, C. M., and Antranikian, G. (1994), Appl. Microbiol. Biotechnol. 42, 239–245.

    CAS  Google Scholar 

  14. Schauder, R. and Kröger, A. (1993), Arch. Microbiol. 159, 491–497.

    Article  CAS  Google Scholar 

  15. Garcia, B. L., Ball, A. S., Rodriguez, J., Perez-Leblic, M. I., Arias, M. E., and Copa-Patino, J. L. (1998), FEMS Microbiol. Lett. 158(1), 95–99.

    Article  CAS  Google Scholar 

  16. Hostalka, F., Moultrie, A., and Stutzenberger, F. (1992), J. Bacteriol. 174(21), 7048–7052.

    CAS  Google Scholar 

  17. Damaso, M. C. T., Andrade, C. M., and Pereira, N. Jr. (2000), Appl. Biochem. Biotechnol. 84–86, 1–14.

    Google Scholar 

  18. Schyns, P. J. Y. M. J. and Stams, A. J. M. (1992), in Xylan and Xylanases, Visser, J., Beldman, G., Kusters-van Someren, M. A., and Voragen, A. G. J. eds., Elsevier Science, Amsterdam, pp. 295–300.

    Google Scholar 

  19. Kristufek, D., Zeilinger, S., and Kubicek, C. P. (1995), Appl. Microbiol. Biotechnol. 42, 713–717.

    Article  CAS  Google Scholar 

  20. Adamsen, A. K., Lindhagen, J., and Ahring, B. K. (1995), Appl. Microbiol. Biotechnol. 44, 327–332.

    Article  CAS  Google Scholar 

  21. Xu, J. P., Nogawa, M., Okada, H., and Morikawa, Y. (1998), Biosci. Biotechnol. Biochem. 62(8), 1555–1559.

    Article  CAS  Google Scholar 

  22. Gobbetti, M., Lavermicocca, P., Minervini, F., De Angelis, M., and Corsetti, A. (2000), J. Appl. Microbiol. 88(2), 317–324.

    Article  CAS  Google Scholar 

  23. McMillan, J. D. and Boynton, B. L. (1994), Appl. Biochem. Biotechnol. 45/46, 569–582.

    Article  Google Scholar 

  24. Cook, G. M., Janssen, P. H., Russel, J. B., and Morgan, H. W. (1994), FEMS Microbiol. Lett. 116, 257–262.

    Article  CAS  Google Scholar 

  25. Biesterveld, S., Kok, M. D., Dijkema, C., Zehnder, J. B., and Stams, A. J. M. (1994), Arch. Microbiol. 161, 521–527.

    CAS  Google Scholar 

  26. Nakanishi, K., Marui, M., and Yasui, T. (1992), J. Ferment. Bioeng. 74, 392–394.

    Article  CAS  Google Scholar 

  27. Khasin, A., Alchanati, I., and Shoham, Y. (1993), Appl. Environ. Microbiol. 59(6), 1725–1730.

    CAS  Google Scholar 

  28. Bérenger, J. F., Frixon, C., Bigliardi, J., and Creuzet, N. (1985), Can. J. Microbiol. 31, 635–643.

    Article  Google Scholar 

  29. Asenjo, J. Á. (1995), Bioreactor System Design, Marcel Dekker, New York.

    Google Scholar 

  30. Ponpium, P., Ratanakhanokchai, K., and Kyu, K. L. (2000), Enzyme Microbiol. Technol. 26(5–6), 459–465.

    Article  CAS  Google Scholar 

  31. Ohara, H., Karita, S., Kimura, T., Sakka, K., and Ohmiya, K. (2000), Biosci. Biotechnol. Biochem. 64(2), 254–260.

    Article  CAS  Google Scholar 

  32. Lee, Y., Lowe, S. E., and Zeikus, J. G. (1993), Appl. Environ. Microbiol. 59, 3134–3137.

    CAS  Google Scholar 

  33. Uhl, A. M. and Daniel, R. M. (1999), Extremophiles 3(4), 263–267.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina M. M. Carvalho Andrade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carvalho Andrade, C.M.M., Aguiar, W.B. & Antranikian, G. Physiological aspects involved in production of xylanolytic enzymes by deep-sea hyperthermophilic archaeon Pyrodictium abyssi . Appl Biochem Biotechnol 91, 655–669 (2001). https://doi.org/10.1385/ABAB:91-93:1-9:655

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:91-93:1-9:655

Index Entries

Navigation