Skip to main content
Log in

Structural basis of matrix metalloproteinases and tissue inhibitors of metalloproteinases

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The matrix metalloproteinases (MMPs) constitute a family of secreted/cell-surface-anchored multidomain zinc endopeptidases, all of which exhibit a catalytic domain of a common metzincin-like topology, and which are involved in degradation of the extracellular matrix but also in a number of other biologic processes. Normally, the proteolytic activity of the MMPs is precisely regulated by their main endogenous protein inhibitors, in particular the tissue inhibitors of metalloproteinases (TIMPs). Disruption of this balance results in serious diseases such as arthritis, tumor growth, and tumor metastasis, rendering the MMPs attractive targets for inhibition therapy. Knowledge of their tertiary structures is crucial for a full understanding of their functional properties and their associations with dysfunctions. Since the reports of the first atomic structures of MMPs and TIMPs in 1994, considerable structural information has become available about both of these families of substances. Many of the MMP structures have been determined as complexes with synthetic inhibitors, facilitating knowledge-based drug design. This review focuses on the currently available 3D structural information about MMPs and TIMPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gross, J. and Lapiere, C. M. (1962) Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc. Nat. Acad. Sci. USA 48, 1014–1022.

    Article  PubMed  CAS  Google Scholar 

  2. Nagase, H. and Woessner, J.F. Jr. (1999) Matrix metalloproteinases. J Biol Chem. 274, 21491–21494.

    Article  PubMed  CAS  Google Scholar 

  3. Woessner, J.F and Nagase, H. (2000) Matrix Metalloproteinases and TIMPs. Oxford University Press, New York.

    Book  Google Scholar 

  4. Brinckerhoff, C.E. and Matrisian, L.M. (2002) Matrix metalloproteinases: A tail of a frog that became a prince. Nature Rev. Mol. Biol. 3, 207–214.

    Article  CAS  Google Scholar 

  5. Murphy, G. and Gavrilovic, J. (1999) Proteolysis and cell migration: Creating a path? Curr. Opin. Cell Biol. 11, 614–621.

    Article  PubMed  CAS  Google Scholar 

  6. Sternlicht, M.D. and Werb, Z. (2001) How matrix metalloproteinases regulate cell behaviour. Ann. Rev. Cell Dev. Biol. 17, 463–516.

    Article  CAS  Google Scholar 

  7. Oh, J., Takahashi, R., Kondo, S., et al. (2001) The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell 107, 789–800.

    Article  PubMed  CAS  Google Scholar 

  8. Herman, M.P., Sukhova, G.K., Kisiel, W., et al. (2001) Tissue factor pathway inhibitor-2 is a novel inhibitor of matrix metalloproteinases with implications for atherosclerosis. J. Clin. Invest. 107, 1117–1126.

    PubMed  CAS  Google Scholar 

  9. Mott, J.D., Thomas, C.L., Rosenbach, M.T., et al. (2000) Post-translational proteolytic processing of procollagen C-terminal proteinase enhancer releases a metalloproteinase inhibitor. J. Biol. Chem. 275, 1384–1390.

    Article  PubMed  CAS  Google Scholar 

  10. Stetler-Stevenson, W.G. (1999) Matrix metalloproteinases in angiogenesis: A moving target for therapeutic intervention. J. Clin. Invest. 103, 1237–1241.

    PubMed  CAS  Google Scholar 

  11. Johansson, N., Ahonen, M., and Kähäri, V.M. (2000) Matrix metalloproteinases in tumor invasion. Cell. Mol. Life Sci. 57, 45–15.

    Google Scholar 

  12. Stamenkovic, I. (2000) Matrix metalloproteinases in tumor invasion and metastasis. Semin. Cancer Biol. 10, 415–433.

    Article  PubMed  CAS  Google Scholar 

  13. Nguyen, M., Arkell, J., and Jackson, C. J. (2000) Human endothelial gelatinases and angiogenesis. Int. J. Biochem. Cell Biol. 33, 960–970.

    Article  Google Scholar 

  14. McCawley, L.J. and Matrisian, L.M. (2000) Matrix metalloproteinases: multifunctional contributors to tumor progression. Mol. Med. Today 6, 149–156.

    Article  PubMed  CAS  Google Scholar 

  15. Brinckerhoff, C.E., Rutter, J.L., and Benbow, U. (2000) Insterstitial collagenases as markers of tumor progression. Clin. Cancer Res. 6, 4823–4830.

    PubMed  CAS  Google Scholar 

  16. Bergers, G., Brekken, R., McMahon, G., et al. (2000) Matrix metalloproteinase-9triggers the angiogenic switch during carcinogenesis. Nature Cell Biol. 2, 737–744.

    Article  PubMed  CAS  Google Scholar 

  17. Foda, H.D. and Zucker, S. (2001) Matrix metalloproteinases in cancer invasion, metastasis and angiogenesis. Drug Discovery Today 6, 478–482.

    Article  CAS  PubMed  Google Scholar 

  18. Parks, W.C. and Shapiro, S.D. (2001) Matrix metalloproteinases in lung biology. Respir. Res. 2, 10–19.

    Article  PubMed  CAS  Google Scholar 

  19. Lohi, J., Wilson, C.L., Roby, J.D., and Parks, W.C. (2001) Epilysin, a novel human matrix metalloproteinase (MMP-28) expressed in testis and keratinocytes and in response to injury. J. Biol. Chem. 276, 10134–10144.

    Article  PubMed  CAS  Google Scholar 

  20. Lee, R.T. (2001) Matrix metalloproteinase inhibition and the prevention of heart failure. Trends Cardiovasc. Med. 11, 202–205.

    Article  PubMed  CAS  Google Scholar 

  21. Johnson, L. L., Dyer, R., and Hupe, D. J. (1998) Matrix metalloproteinases. Curr. Opin. Chem. Biol. 2, 466–471.

    Article  PubMed  CAS  Google Scholar 

  22. Giavazzi, R. and Taraboletti, G. (2001) Preclinical development of metalloproteasis inhibitors in cancer therapy. Crit. Rev. Oncol./Hematol. 37, 53–60.

    Article  CAS  Google Scholar 

  23. Dove, A. (2002) MMP inhibitors: Glimmers of hope amidst clinical failures. Nat. Med. 8, 95.

    Article  PubMed  CAS  Google Scholar 

  24. Bottomley, K.M., Johnson, W.H., and Walter, D.S. (1998) Matrix metalloproteinase inhibitors in arthritis. J. Enzym. Inhib. 13, 79–101.

    Article  PubMed  CAS  Google Scholar 

  25. Hidalgo, M. and Eckhardt, S.G. (2001) Development of matrix metalloproteinase inhibitors in cancer therapy. J. Natl. Cancer Inst. 93, 178–193.

    Article  PubMed  CAS  Google Scholar 

  26. Brew, K., Dinakarpandian, D., and Nagase, H. (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim. Biophys. Acta 1477, 267–283.

    PubMed  CAS  Google Scholar 

  27. Bode, W. and Maskos, K. (2000) Structural studies on MMPs and TIMPs. In: Methods in Molecular Biology. Matrix Metalloproteinase Protocols Vol. 151, 45–77.

    Article  Google Scholar 

  28. Bode, W., Gomis-Rüth, F.-X., and Stöcker, W. (1993) Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the ‘metzincins’. FEBS Lett. 331, 134–140.

    Article  PubMed  CAS  Google Scholar 

  29. Stöcker, W., Grams, F., Baumann, U., et al. (1995) The metzincins—topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Sci. 4, 823–840.

    Article  PubMed  Google Scholar 

  30. Overall CM. (2002) Molecular determinants of metalloproteinase substrate specificity: Matrix metalloproteinase substrate binding domains, modules, and exosites. Mol Biotechnol. 22, 51–86.

    Article  PubMed  CAS  Google Scholar 

  31. Curran, S. and Murray, G.I. (2000) Matrix metalloproteinases: Molecular aspects of their roles in tumor invasion and metastasis. Eur. J. Cancer 36, 1621–1630.

    Article  PubMed  CAS  Google Scholar 

  32. Gururajan, R., Grenet, J., Lahti, J.M., and Kidd, V.J. (1998) Isolation and characterization of two novel metalloproteinase genes linked to the Cdc2L locus on human chromosome 1p36.3. Genomics 52, 101–106.

    Article  PubMed  CAS  Google Scholar 

  33. Balbin, M., Fueyo, A., Knauper, V., et al. (2001) Identification and enzymatic characterization of two diverging murine counterparts of human interstitial collagenase (MMP-1) expressed at sites of embryo implantation. J. Biol. Chem. 276, 10253–10262.

    Article  PubMed  CAS  Google Scholar 

  34. Massova, I., Kotra, L.P, Fridman, R., and Mobashery, S. (1998) Matrix metalloproteinases: structures, evolution, and diversification. FASEB J. 12, 1075–1095.

    PubMed  CAS  Google Scholar 

  35. Barrett, A.J., Rawlings, N.D., and Woessner, JF Jr. (1998) Handbook of Proteolytic Enzymes Academic Press, London.

    Google Scholar 

  36. Pei D. (1999) A-MMP: a matrix metalloproteinase with a novel cysteine array, but without the classic cysteine switch. FEBS Lett. 457, 262–270.

    Article  PubMed  CAS  Google Scholar 

  37. Velasco, G., Pendas, A.M., Fueyo, A., et al. (1999) Cloning and characterization of human MMP-23, a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members. J. Biol. Chem. 274, 4570–4576.

    Article  PubMed  CAS  Google Scholar 

  38. Pei, D., Kang, T., and Qi, H. (2000) Cysteine array matrix metalloproteinase (CA-MMP)/MMP-23 is a type II transmembrane matrix metalloproteinase regulated by a single cleavage for both secretion and activation. J. Biol. Chem. 275, 33988–33997.

    Article  PubMed  CAS  Google Scholar 

  39. van Wart, H.E. and Birkedal-Hansen, H. (1990) The cysteine switch: A principle of regulation of metallo-proteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc. Natl. Acad. Sci. USA 87, 5578–5582.

    Article  PubMed  Google Scholar 

  40. Park, H.I., Ni, J., Gerkema, F.E., et al. (2000) Identification and characterization of human endometase (Matrix metalloproteinase-26) from endometrial tumor. J. Biol. Chem. 275, 20540–20544.

    Article  PubMed  CAS  Google Scholar 

  41. Uria, J.A. and Lopez-Otin, C. (2000) Matrilysin-2, a new matrix metalloproteinase expressed in human tumors and showing the minimal domain organization required for secretion, latency, and activity. Cancer Res. 60, 4745–4751

    PubMed  CAS  Google Scholar 

  42. Marchenko, N.D., Marchenko, G.N., and Strongin, A.Y. (2002) Unconventional activation mechanisms of MMP-26, a human matrix metalloproteinase with a unique PHCGXXD cysteine-switch motif. J. Biol. Chem. 277, 18967–18972.

    Article  PubMed  CAS  Google Scholar 

  43. Sato, H., Takino, T., Okada, Y., et al. (1994) A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 370, 61–65.

    Article  PubMed  CAS  Google Scholar 

  44. Pei, D. and Weiss, S. J. (1995) Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature 375, 244–247.

    Article  PubMed  CAS  Google Scholar 

  45. Cao, J., Sato, H., Takino, T., and Seiki, M. (1995) The C-terminal region of membrane type matrix metalloproteinase is a functional transmembrane domain required for progelatinase A activation. J. Biol. Chem. 270, 801–805.

    Article  PubMed  CAS  Google Scholar 

  46. Itoh, Y., Kajita, M., Kinoh, H., et al. (1999) Membrane type 4 matrix metalloproteinase (MT4-MMP, MMP-17) is a glycosylphosphatidylinositol-anchored proteinase. J. Biol. Chem. 274, 34260–34266.

    Article  PubMed  CAS  Google Scholar 

  47. Morgunova, E., Tuuttila, A., Bergmann, U., et al. (1999) Structure of human pro-matrix metalloproteinase-2: activation mechanism revealed. Science 284, 1667–1670.

    Article  PubMed  CAS  Google Scholar 

  48. Sang, Q.A. and Douglas, D.A. (1996) Computational sequence analysis of matrix metalloproteinases. J. Protein Chem. 15, 137–160.

    Article  PubMed  CAS  Google Scholar 

  49. Marchenko, G.N. and Strongin, A.Y. (2001) MMP-28, a new human matrix metalloproteinase with an unusual cysteine-switch sequence is widely expressed in tumors. Gene 265, 87–93.

    Article  PubMed  CAS  Google Scholar 

  50. Douglas, D. A., Shi, Y.E., and Sang Q. A. (1997) Computational sequence analysis of the tissue inhibitor of metalloproteinase family. J. Protein Chem. 16, 237–255.

    Article  PubMed  CAS  Google Scholar 

  51. Gomez, D.E., Alonso, D.F., Yoshiji, H., and Thorgeirsson, U.P. (1997) Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur. J. Cell Biol. 74, 111–122.

    PubMed  CAS  Google Scholar 

  52. Cawston, T. (1998) Matrix metalloproteinases and TIMPs: Properties and implications for the rheumatic diseases. Mol. Med. Today 4, 130–137.

    Article  PubMed  CAS  Google Scholar 

  53. Murphy, G. and Willenbrock, F. (1995) Tissue inhibitors of matrix metalloendopeptidases. Methods Enzymol. 248, 496–510.

    PubMed  CAS  Google Scholar 

  54. Murphy, G., Houbrechts, A., Cockett, M. I., et al. (1991) The N-terminal domain of human tissue inhibitor of metalloproteinases retains metalloproteinase inhibitory activity. Biochemistry 30, 8097–8102.

    Article  PubMed  CAS  Google Scholar 

  55. Bigg, H.F., Morrison, C.J., Butler, G.S., et al. (2001) Tissue inhibitor of metalloproteinases-4 inhibits but does not support the activation of gelatinase A via efficient inhibition of membrane type 1-matrix metalloproteinase. Cancer Res. 61, 3610–3618.

    PubMed  CAS  Google Scholar 

  56. Butler, G.S., Apte, S.S., Willenbrock, F., and Murphy, G. (1999) Human tissue inhibitor of metalloproteinases 3 interacts with both the N- and C-terminal domains of gelatinases A and B. Regulation by polyanions. J. Biol. Chem. 274, 10846–10851.

    Article  PubMed  CAS  Google Scholar 

  57. Strongin, A. Y., Collier, I. E., Bannikov, U., et al. (1995) Mechanism of cell surface activation of 72-kDa type IV collagenase. J. Biol. Chem. 270, 5331–5338.

    Article  PubMed  CAS  Google Scholar 

  58. Kinoshita, T., Sato, H., Takino, T., et al. (1996) Processing of a precursor of 72-kilodalton type IV collagenase/gelatinase A by a recombinant membrane-type 1 matrix metalloproteinase. Cancer Res. 56, 2535–2538.

    PubMed  CAS  Google Scholar 

  59. Murphy, G. and Knäuper, V. (1997) Relating matrix metalloproteinase structure to function: why the “hemopexin” domain? Matrix Biol. 15, 511–518.

    Article  PubMed  CAS  Google Scholar 

  60. Butler, G.S., Will, H., Atkinson, S.J., and Murphy, G. (1997) Membrane-type-2 matrix metalloproteinase can initiate the processing of progelatinase A and is regulated by the tissue inhibitors of metalloproteinases. Eur. J. Biochem. 244, 653–657.

    Article  PubMed  CAS  Google Scholar 

  61. Zucker, S., Drews, M., Conner, C., et al. (1998) Tissue inhibitor of metalloproteinase-2 (TIMP-2) binds to the catalytic domain of the cell surface receptor, membrane type 1-matrix metalloproteinase 1 (MT1-MMP). J. Biol. Chem. 273, 1216–1222.

    Article  PubMed  CAS  Google Scholar 

  62. Deryugina, E.I., Ratnikov, B., Monosov, E., et al. (2001) MT1-MMP initiates activation of pro-MMP-2 and integrin alphavbeta3 promotes maturation of MMP-2 in breast carcinoma cells. Exp Cell Res. 263, 209–223.

    Article  PubMed  CAS  Google Scholar 

  63. English, W.R., Puente, X.S., Freije, J.M., et al. (2000) Membrane type 4 matrix metalloproteinase (MMP17) has tumor necrosis factor-alpha convertase activity but does not activate pro-MMP2. J Biol Chem. 275, 14046–14055.

    Article  PubMed  CAS  Google Scholar 

  64. Morrison, C.J., Butler, G.S., Bigg, H.F., et al. (2001) Cellular activation of MMP-2 (gelatinase A) by MT2-MMP occurs via a TIMP-2-independent pathway. J Biol Chem. 276, 47402–47410.

    Article  PubMed  CAS  Google Scholar 

  65. Lovejoy, B., Cleasby, A., Hassell, A.M., et al. (1994) Structure of the catalytic domain of fibroblast collagenase complexed with an inhibitor. Science 263, 375–377.

    Article  PubMed  CAS  Google Scholar 

  66. Borkakoti, N., Winkler, F.K., Williams, D.H., et al. (1994) Structure of the catalytic domain of human fibroblast collagenase complexed with an inhibitor. Nature Struct. Biol. 1, 106–110.

    Article  PubMed  CAS  Google Scholar 

  67. Stams, T., Spurlino, J.C., Smith, D.L., et al. (1994) Structure of human neutrophil collagenase reveals large S1′ specificity pocket. Nature Struct. Biol. 1, 119–123.

    Article  PubMed  CAS  Google Scholar 

  68. Spurlino, J.C., Smallwood, A.M., Carlton, D.D., et al. (1994) 1.56Å structure of mature truncated human fibroblast collagenase. Proteins: Struct. Funct. Genet. 19, 98–109.

    Article  CAS  Google Scholar 

  69. Bode, W., Reinemer, P., Huber, R., et al. (1994) The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity. EMBO J. 13, 1263–1269.

    PubMed  CAS  Google Scholar 

  70. Reinemer, P., Grams, F., Huber, R., et al. (1994) Structural implications for the role of the N-terminus in the “superactivation” of collagenases—a crystallographic study. FEBS Lett. 338, 227–233.

    Article  PubMed  CAS  Google Scholar 

  71. Gooley, P.R., O’Connell, J.F., Marcy, A.I., et al. (1994) NMR structure of inhibited catalytic domain of human stromelysin-1. Nat. Struct. Biol. 1, 111–118.

    Article  PubMed  CAS  Google Scholar 

  72. Lovejoy, B., Hassell, A.M., Luther, M.A., et al. (1994) Crystal structures of recombinant 19-kDa human fibroblast collagenase complexed to itself. Biochemistry 33, 8207–8217.

    Article  PubMed  CAS  Google Scholar 

  73. Browner, M.F., Smith, W. W., and Castelhano, A.L. (1995) Matrilysin-inhibitor complexes: common themes among metalloproteases. Biochemistry 34, 6602–6610.

    Article  PubMed  CAS  Google Scholar 

  74. Becker, J.W., Marcy, A.I., Rokosz, L.L., et al. (1995) Stromelysin-1: Three-dimensional structure of the inhibited catalytic domain and of the C-truncated proenzyme. Protein Sci. 4, 1966–1976.

    Article  PubMed  CAS  Google Scholar 

  75. Dhanaraj, V., Ye, Q-Z, Johnson, L.L., et al. (1996) X-ray structure of a hydroxamate inhibitor complex of stromelysin catalytic domain and its comparison with members of the zinc metalloproteinase superfamily. Structure 4, 375–386.

    Article  PubMed  CAS  Google Scholar 

  76. van Doren, S.R., Kurochkin, A.V., Hu, W., et al. (1995) Solution structure of the catalytic domain of human stromelysin complexed with a hydrophobic inhibitor. Protein Sci. 4, 2487–2498.

    PubMed  Google Scholar 

  77. Wetmore, D.R. and Hardman, K.D. (1996) Roles of the propeptide and metal ions in the folding and stability of the catalytic domain of stromelysin (matrix metalloproteinase 3). Biochemistry 35, 6549–6558.

    Article  PubMed  CAS  Google Scholar 

  78. Gomis-Rüth, F.X., Maskos, K., Betz, M., et al. (1997) Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature 389, 77–81.

    Article  PubMed  Google Scholar 

  79. Grams, F., Reinemer, P., Powers, J.C., et al. (1995) X-ray structures of human neutrophil collagenase complexed with peptide hydroxamate and peptide thiol inhibitors. Implications for substrate binding and rational drug design. Eur. J. Biochem. 228, 830–841.

    Article  PubMed  CAS  Google Scholar 

  80. Grams, F., Crimmin, M., Hinnes, L., et al. (1995) Structure determination and analysis of human neutrophil collagenase complexed with a hydroxamate inhibitor. Biochemistry 34, 14012–14020.

    Article  PubMed  CAS  Google Scholar 

  81. Fernandez-Catalan, C., Bode, W., Huber, R., et al. (1998) Crystal structure of the complex formed by the membrane type 1-matrix metalloproteinase with the tissue inhibitor of metalloproteinases-2, the soluble progelatinase A receptor. EMBO J. 17, 5238–5248.

    Article  PubMed  CAS  Google Scholar 

  82. Li, J.-Y., Brick, P., O’Hare, M.C., et al. (1995) Structure of full-length porcine synovial collagenase reveals a C-terminal domain containing a calcium-linked, four-bladed β-propeller. Structure 3, 541–549.

    Article  PubMed  CAS  Google Scholar 

  83. Libson, A., Gittis, A., Collier, I., et al. (1995) Crystal structure of the hemopexin-like C-terminal domain of gelatinase A. Nature Struct. Biol. 2, 938–942.

    Article  PubMed  CAS  Google Scholar 

  84. Gohlke, U., Gomis-Rüth, F.-X., Crabbe, T., et al. (1996) The C-terminal (haemopexin-like) domain structure of human gelatinase A (MMP2): structural implications for its function. FEBS Lett. 378, 126–130.

    Article  PubMed  CAS  Google Scholar 

  85. Bode, W. (1995) A helping hand for collagenases: the haemopexin-like domain. Structure 3, 527–530.

    Article  PubMed  CAS  Google Scholar 

  86. Gomis-Rüth, F.X., Gohlke, U., Betz, M., et al. (1996) The helping hand of collagenase-3 (MMP-13): 2.7Å crystal structure of its C-terminal haemopexin-like domain. J. Mol. Biol. 264, 556–566.

    Article  PubMed  Google Scholar 

  87. Dhanaraj, V., Williams, M.G., Ye, Q.-Z., et al. (1999) X-Ray Structure of Gelatinase a Catalytic Domain Complexed with a Hydroxamate Inhibitor Croat. Chem. Acta 72, 575–591.

    CAS  Google Scholar 

  88. Lovejoy, B., Welch, A.R., Carr, S., et al. (1999) Crystal structures of MMP-1 and -13 reveal the structural basis for selectivity of collagenase inhibitors. Nature Struct. Biol. 6, 217–221.

    Article  PubMed  CAS  Google Scholar 

  89. Botos, I., Meyer, E., Swanson, S. M., et al. (1999) Structure of recombinant mouse collagenase-3 (Mmp-13) J.Mol.Biol. 292, 837–844.

    Article  PubMed  CAS  Google Scholar 

  90. Gall, A.L., Ruff, M., Kannan, R., et al. (2001) Crystal structure of the stromelysin-3 (MMP-11) catalytic domain complexed with a phosphinic inhibitor mimicking the transition-state. J. Mol. Biol. 307, 577–586.

    Article  PubMed  CAS  Google Scholar 

  91. Lang, R., Kocourek, A., Braun, M., et al. (2001): Substrate Specificity Determinants of Human Macrophage Elastase (Mmp-12) Based on the 1.1 A Crystal Structure J. Mol. Biol. 312, 731–742.

    Article  PubMed  CAS  Google Scholar 

  92. Nar, H., Werle, K., Bauer, M.M., et al. (2001) Crystal structure of human macrophage elastase (MMP-12) in complex with a hydroxamic acid inhibitor. J. Mol. Biol. 312, 743–751.

    Article  PubMed  CAS  Google Scholar 

  93. Lang, R., Braun, M., Sounni, N.E., et al. (2003) The crystal structure of membrane-type-3 matrix metalloproteinase. Submitted for publication.

  94. Rowsell, S., Hawtin, P., Minshull, C.A., et al. (2002) Crystal structure of human MMP9 in complex with a reverse hydroxamate inhibitor. J. Mol. Biol. 319, 173–181.

    Article  PubMed  CAS  Google Scholar 

  95. Elkins, P.A., Ho, Y.S., Smith, W.W., et al. (2002) Structure of the C-terminally truncated human Pro-MMP9, a gelatin-binding matrix metalloproteinase. Acta Crystallogr. D. Biol. Crystallogr. 58, 1182–1192.

    Article  PubMed  CAS  Google Scholar 

  96. Morgunova, E., Tuuttila, A., Bergmann, U., and Tryggvason, K. (2002) Structural insight into the complex formation of latent matrix metalloproteinase 2 with tissue inhibitor of metalloproteinase 2. Proc. Nat. Acad. Sci. USA 99, 7414–7419.

    Article  PubMed  CAS  Google Scholar 

  97. Cha, H., Kopetzki, E., Huber, R., et al. (2002) Structural basis of the adaptive molecular recognition by MMP9. J. Mol. Biol. 320, 1065–1079.

    Article  PubMed  CAS  Google Scholar 

  98. Briknarova, K., Gehrmann, M., Banyai, L., et al. (2001) Gelatin binding region of human matrix metalloproteinase 2: Solution structure, dynamics and function of the Col-23 two-domain construct J. Biol. Chem. 276 27613–27621.

    Article  PubMed  CAS  Google Scholar 

  99. Williamson, R.A., Martorell, G., Carr, M.D., et al. (1994) Solution structure of the active domain of tissue inhibitor of metalloproteinases-2. A new member of the OB fold protein family. Biochemistry 33, 11745–11759.

    Article  PubMed  CAS  Google Scholar 

  100. Williamson, R.A., Carr, M.D., Frenkiel, T.A., et al. (1997) Mapping the binding site for matrix metalloproteinase on the N-terminal domain of the tissue inhibitor of metalloproteinases-2 by NMR chemical shift perturbation. Biochemistry 36, 13882–13889.

    Article  PubMed  CAS  Google Scholar 

  101. Muskett, F.W., Frenkiel, T.A., Feeney, J., et al. (1998) High resolution structure of the N-terminal domain of tissue inhibitor of metalloproteinases-2 and characterization of its interaction site with matrix metalloproteinase-3. J. Biol. Chem. 273, 21736–21743.

    Article  PubMed  CAS  Google Scholar 

  102. Tuuttila, A., Morgunova, E., Bergmann, U., et al. (1998) Three-dimensional structure of human tissue inhibitor of metalloproteinases-2 at 2.1 Å resolution. J. Mol. Biol. 284, 1133–1140.

    Article  PubMed  CAS  Google Scholar 

  103. Wu, B., Arumugam, S., Gao, G., et al. (2000) NMR structure of tissue inhibitor of metalloproteinases-1 implicates localized induced fit in recognition of matrix metalloproteinases. J. Mol. Biol. 295, 257–268.

    Article  PubMed  CAS  Google Scholar 

  104. Schechter, I. and Berger, A. (1967) On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun. 27, 157–162.

    Article  PubMed  CAS  Google Scholar 

  105. English, W.R., Holtz, B., Vogt, G., et al. (2001) Characterization of the role of the “MT-loop”: an eight-amino acid insertion specific to progelatinase A (MMP2) activating membrane-type matrix metalloproteinases. J Biol. Chem. 276, 42018–42026.

    Article  PubMed  CAS  Google Scholar 

  106. Brandstetter, H., Grams, F., Glitz, D., et al. (2001) The 1.8-A crystal structure of a matrix metalloproteinase 8-barbiturate inhibitor complex reveals a previously unobserved mechanism for collagenase substrate recognition J. Biol. Chem. 276, 17405

    Article  PubMed  CAS  Google Scholar 

  107. Pickford, A.R., Potts, J.R., Bright, J.R., et al. (1997) Solution structure of a type 2 module from fibronectin: Implications for the structure and function of the gelatin-binding domain. Structure 5, 359–370.

    Article  PubMed  CAS  Google Scholar 

  108. Ottl, J., Gabriel, D., Murphy, G., et al. (2000) Recognition and catabolism of synthetic heterotrimeric collagen peptides by matrix metalloproteinases. Chem Biol. 7, 119–132.

    Article  PubMed  CAS  Google Scholar 

  109. Overall, C.M. (2001) Matrix metalloproteinase substrate binding domains, modules and exosites. Overview and experimental strategies. Methods Mol. Biol. 151, 79–120.

    PubMed  CAS  Google Scholar 

  110. Nagase, H. (1997) Activation mechanisms of matrix metalloproteinases. Biol. Chem. 378, 151–160.

    PubMed  CAS  Google Scholar 

  111. Hege, T., and Baumann, U. (2001) The conserved methionine residue of the metzincins: a site-directed mutagenesis study. J. Mol. Biol. 314, 181–186.

    Article  PubMed  CAS  Google Scholar 

  112. Matthews, B.W. (1988) Structural basis of the action of thermolysin and related zinc peptidases. Acc. Chem. Res. 21, 333–340.

    Article  CAS  Google Scholar 

  113. Crabbe, T., Zucker, S., Cockett, M.I., et al. (1994) Mutation of the active site glutamic acid of human gelatinase A: effects on latency, catalysis, and the binding of tissue inhibitor of metalloproteinases-1. Biochemistry 33, 6684–6690.

    Article  PubMed  CAS  Google Scholar 

  114. Windsor, L.J., Bodden, M.K., Birkedal-Hansen, B., et al. (1994) Mutational analysis of residues in and around the active site of human fibroblast-type collagenase. J. Biol. Chem. 269, 26201–26207.

    PubMed  CAS  Google Scholar 

  115. Bode, W., Gomis-Rüth, F.X., Huber, R., et al. (1992) Structure of astacin and implications for activation of astacins and zinc-ligation of collagenases. Nature 358, 164–166.

    Article  PubMed  CAS  Google Scholar 

  116. Grams, F., Dive, V., Yiotakis, A., et al. (1996) Structure of astacin with a transition-state analogue inhibitor. Nature Struct. Biol. 3, 671–675.

    Article  PubMed  CAS  Google Scholar 

  117. Kang, T., Nagase, H., Pei, D. (2002) Activation of membrane-type matrix metalloproteinase 3 zymogen by the proprotein convertase furin in the trans-Golgi network. Cancer Res. 62, 675–681.

    PubMed  CAS  Google Scholar 

  118. van Wart, H.E. and Birkedal-Hansen, H. (1990) The cysteine switch: A principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc. Natl. Acad. Sci. USA 87, 5578–5582.

    Article  PubMed  Google Scholar 

  119. Faber, H.R., Groom, C.R., Baker, H.M., et al. (1995) 1.8 Å crystal structure of the C-terminal domain of rabbit serum haemopexin. Structure 3, 551–559.

    Article  PubMed  CAS  Google Scholar 

  120. Itoh, Y., Takamura, A., Ito, N., et al. (2001) Homophilic complex formation of MT1-MMP facilitates proMMP-2 activation on the cell surface and promotes tumor cell invasion. EMBO J. 20, 4782–4793.

    Article  PubMed  CAS  Google Scholar 

  121. Overall, C.M., Tam, E., McQuibban, G.A., et al. (2000) Domain interactions in the gelatinase A.TIMP-2.MT1-MMP activation complex. The ectodomain of the 44-kDa form of membrane type-1 matrix metalloproteinase does not modulate gelatinase A activation. J. Biol. Chem. 275, 39497–39506.

    Article  PubMed  CAS  Google Scholar 

  122. Lehti, K., Lohi, J., Juntunen, M.M., et al. (2002) Oligomerization through hemopexin and cytoplasmic domains regulates the activity and turnover of membrane-type 1 matrix metalloproteinase. J. Biol. Chem. 277, 8440–8448.

    Article  PubMed  CAS  Google Scholar 

  123. Rozanov, D.V., Deryugina, E.I., Ratnikov, B.I., et al. (2001) Mutation analysis of membrane type-1 matrix metalloproteinase (MT1-MMP). The role of the cytoplasmic tail Cys(574), the active site Glu(240), and furin cleavage motifs in oligomerization, processing, and self-proteolysis of MT1-MMP expressed in breast carcinoma cells. J. Biol. Chem. 276, 25705–25714.

    Article  PubMed  CAS  Google Scholar 

  124. Lehti, K., Valtanen, H., Wickstrom, S., et al. (2000) Regulation of membrane-type-1 matrix metalloproteinase activity by its cytoplasmic domain. J. Biol. Chem. 275, 15006–15013.

    Article  PubMed  CAS  Google Scholar 

  125. Opdenakker, G., van den Steen, P.E., and van Damme, J. (2001) Gelatinase B: a tuner and amplifier of immune functions. Trends Immunol. 22, 571–579.

    Article  PubMed  CAS  Google Scholar 

  126. Chung, L., Shimokawa, K., Dinakarpandian, D., et al. (2000) Identification of the (183)RWTNNFREY(191) region as a critical segment of matrix metalloproteinase 1 for the expression of collagenolytic activity. J. Biol. Chem. 275, 29610–29617.

    Article  PubMed  CAS  Google Scholar 

  127. Ohuchi, E., Imai, K., Fujii, Y., et al. (1997) Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J. Biol. Chem. 272, 2446–2451.

    Article  PubMed  CAS  Google Scholar 

  128. Knäuper, V., Docherty, A.J.P., Smith, B., et al. (1997) Analysis of the contribution of the hinge region of human neutrophil collagenase (HNC, MMP-8) to stability and collagenolytic activity by alanine scanning mutagenesis. FEBS Lett. 405, 60–64.

    Article  PubMed  Google Scholar 

  129. Huang, W., Meng, Q., Suzuki, K., et al. (1997) Mutational study of the amino-terminal domain of human tissue inhibitor of metalloproteinases 1 (TIMP-1) locates an inhibitory region for matrix metalloproteinases. J. Biol. Chem. 272, 22086–22091.

    Article  PubMed  CAS  Google Scholar 

  130. Meng, Q., Malinovskii, V., Huang, W., et al. (1999) Residue 2 of TIMP-1 is a major determinant of affinity and specificity for matrix metalloproteinases but effects of substitutions do not correlate with those of the corresponding P1′ residue of substrate. J. Biol. Chem. 274, 10184–10189.

    Article  PubMed  CAS  Google Scholar 

  131. Lee, M.H., Dodds, P., Verma, V., et al. (2003) Tailoring tissue inhibitor of metalloproteinases (TIMP)-3 to overcome the weakening effects of the cysteine-rich domains of tumor necrosis factor-a converting enzyme (TACE). J. Biochem

  132. Hege, T., Feltzer, R.E., Gray, R.D., and Baumann, U. (2001) Crystal structure of a complex between Pseudomonas aeruginosa alkaline protease and its cognate inhibitor: inhibition by a zinc-NH2 coordinative bond. J. Biol. Chem. 276, 35087–35092.

    Article  PubMed  CAS  Google Scholar 

  133. Butler, G.S., Hutton, M., Wattam, B.A., et al. (1999) The specificity of TIMP-2 for matrix metalloproteinases can be modified by single amino acid mutations. J. Biol. Chem. 274, 20391–20396.

    Article  PubMed  CAS  Google Scholar 

  134. Butler, G.S., Butler, M.J., Atkinson, S.J., et al. (1998) The TIMP2 membrane type 1 metalloproteinase “receptor” regulates the concentration and efficient activation of progelatinase A. J. Biol. Chem. 273, 871–880.

    Article  PubMed  CAS  Google Scholar 

  135. Bode, W. and Maskos, K. (2003) Structural basis of the matrix metalloproteinases and their physiological inhibitors, the tissue inhibitors of metalloproteinases. J. Biol. Chem. in press.

  136. Kraulis, P. J. (1991). MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J App. Crystallogr. 24, 946–950.

    Article  Google Scholar 

  137. Merritt, E. A. and Bacon, D. J. (1997). Raster3D photorealistic molecular graphics. Methods Enzymol. 277, 505–527.

    Article  CAS  PubMed  Google Scholar 

  138. Barton, G. J. (1993) ALSCRIPT: a tool to format multiple sequence alignments. Protein Eng. 6, 37–40.

    Article  PubMed  CAS  Google Scholar 

  139. Evans, S.V. (1993) SETOR: Hardware lighted three-dimensional solid model representations of macromolecules. J. Mol. Graph. 11, 134–138.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram Bode.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maskos, K., Bode, W. Structural basis of matrix metalloproteinases and tissue inhibitors of metalloproteinases. Mol Biotechnol 25, 241–266 (2003). https://doi.org/10.1385/MB:25:3:241

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:25:3:241

Index Entries

Navigation